Abstract
When building deep neural network models for natural language processing tasks, engineers often spend a lot of efforts on coding details and debugging, instead of focusing on model architecture design and hyper-parameter tuning. In this paper, we introduce NeuronBlocks, a deep neural network toolkit for natural language processing tasks. In NeuronBlocks, a suite of neural network layers are encapsulated as building blocks, which can easily be used to build complicated deep neural network models by configuring a simple JSON file. NeuronBlocks empowers engineers to build and train various NLP models in seconds even without a single line of code. A series of experiments on real NLP datasets such as GLUE and WikiQA have been conducted, which demonstrates the effectiveness of NeuronBlocks.
Abstract (translated by Google)
URL
http://arxiv.org/abs/1904.09535