Abstract
With an ultimate goal of narrowing the gap between human and machine readers in text comprehension, we present the first collection of Challenging Chinese machine reading Comprehension datasets (C^3) collected from language and professional certification exams, which contains 13,924 documents and their associated 23,990 multiple-choice questions. Most of the questions in C^3 cannot be answered merely by surface-form matching against the given text. As a pilot study, we closely analyze the prior knowledge (i.e., linguistic, domain-specific, and general world knowledge) needed in these real world reading comprehension tasks. We further explore how to leverage linguistic knowledge including a lexicon of common idioms and proverbs and domain-specific knowledge such as textbooks to aid machine readers, through fine-tuning a pre-trained language model (Devlin et al.,2019). Our experimental results demonstrate that linguistic knowledge may help improve the performance of the baseline reader in both general and domain-specific tasks. C^3 will be available at this http URL
Abstract (translated by Google)
URL
http://arxiv.org/abs/1904.09679