papers AI Learner
The Github is limit! Click to go to the new site.

Characterizing Sparse Connectivity Patterns in Neural Networks

2019-04-25
Sourya Dey, Kuan-Wen Huang, Peter A. Beerel, Keith M. Chugg

Abstract

We propose a novel way of reducing the number of parameters in the storage-hungry fully connected layers of a neural network by using pre-defined sparsity, where the majority of connections are absent prior to starting training. Our results indicate that convolutional neural networks can operate without any loss of accuracy at less than half percent classification layer connection density, or less than 5 percent overall network connection density. We also investigate the effects of pre-defining the sparsity of networks with only fully connected layers. Based on our sparsifying technique, we introduce the `scatter’ metric to characterize the quality of a particular connection pattern. As proof of concept, we show results on CIFAR, MNIST and a new dataset on classifying Morse code symbols, which highlights some interesting trends and limits of sparse connection patterns.

Abstract (translated by Google)
URL

http://arxiv.org/abs/1711.02131

PDF

http://arxiv.org/pdf/1711.02131


Similar Posts

Comments