Abstract
Action recognition has been advanced in recent years by benchmarks with rich annotations. However, research is still mainly limited to human action or sports recognition - focusing on a highly specific video understanding task and thus leaving a significant gap towards describing the overall content of a video. We fill in this gap by presenting a large-scale “Holistic Video Understanding Dataset”~(HVU). HVU is organized hierarchically in a semantic taxonomy that focuses on multi-label and multi-task video understanding as a comprehensive problem that encompasses the recognition of multiple semantic aspects in the dynamic scene. HVU contains approx.~577k videos in total with 13M annotations for training and validation set spanning over {4378} classes. HVU encompasses semantic aspects defined on categories of scenes, objects, actions, events, attributes and concepts, which naturally captures the real-world scenarios. Further, we introduce a new spatio-temporal deep neural network architecture called “Holistic Appearance and Temporal Network”~(HATNet) that builds on fusing 2D and 3D architectures into one by combining intermediate representations of appearance and temporal cues. HATNet focuses on the multi-label and multi-task learning problem and is trained in an end-to-end manner. The experiments show that HATNet trained on HVU outperforms current state-of-the-art methods on challenging human action datasets: HMDB51, UCF101, and Kinetics. The dataset and codes will be made publicly available.
Abstract (translated by Google)
URL
http://arxiv.org/abs/1904.11451