Abstract
In this work, we investigate the following: 1) how the routing affects the CapsNet model fitting; 2) how the representation using capsules helps discover global structures in data distribution, and; 3) how the learned data representation adapts and generalizes to new tasks. Our investigation yielded the results some of which have been mentioned in the original paper of CapsNet, they are: 1) the routing operation determines the certainty with which a layer of capsules pass information to the layer above and the appropriate level of certainty is related to the model fitness; 2) in a designed experiment using data with a known 2D structure, capsule representations enable a more meaningful 2D manifold embedding than neurons do in a standard convolutional neural network (CNN), and; 3) compared with neurons of the standard CNN, capsules of successive layers are less coupled and more adaptive to new data distribution.
Abstract (translated by Google)
URL
http://arxiv.org/abs/1810.04041