papers AI Learner
The Github is limit! Click to go to the new site.

Relevant features for Gender Classification in NIR Periocular Images

2019-04-26
Ignacio Viedma, Juan Tapia, Andres Iturriaga, Christoph Busch

Abstract

Most gender classifications methods from NIR images have used iris information. Recent work has explored the use of the whole periocular iris region which has surprisingly achieve better results. This suggests the most relevant information for gender classification is not located in the iris as expected. In this work, we analyze and demonstrate the location of the most relevant features that describe gender in periocular NIR images and evaluate its influence its classification. Experiments show that the periocular region contains more gender information than the iris region. We extracted several features (intensity, texture, and shape) and classified them according to its relevance using the XgBoost algorithm. Support Vector Machine and nine ensemble classifiers were used for testing gender accuracy when using the most relevant features. The best classification results were obtained when 4,000 features located on the periocular region were used (89.22\%). Additional experiments with the full periocular iris images versus the iris-Occluded images were performed. The gender classification rates obtained were 84.35\% and 85.75\% respectively. We also contribute to the state of the art with a new database (UNAB-Gender). From results, we suggest focussing only on the surrounding area of the iris. This allows us to realize a faster classification of gender from NIR periocular images.

Abstract (translated by Google)
URL

http://arxiv.org/abs/1904.12007

PDF

http://arxiv.org/pdf/1904.12007


Similar Posts

Comments