Abstract
Multiple lidars are prevalently used on mobile vehicles for rendering a broad view to enhance the performance of localization and perception systems. However, precise calibration of multiple lidars is challenging since the feature correspondences in scan points cannot always provide enough constraints. To address this problem, the existing methods require fixed calibration targets in scenes or rely exclusively on additional sensors. In this paper, we present a novel method that enables automatic lidar calibration without these restrictions. Three linearly independent planar surfaces appearing in surroundings is utilized to find correspondences. Two components are developed to ensure the extrinsic parameters to be found: a closed-form solver for initialization and an optimizer for refinement by minimizing a nonlinear cost function. Simulation and experimental results demonstrate the high accuracy of our calibration approach with the rotation and translation errors smaller than 0.05rad and 0.1m respectively.
Abstract (translated by Google)
URL
http://arxiv.org/abs/1904.12116