Abstract
Knowledge graphs (KGs), i.e. representation of information as a semantic graph, provide a significant test bed for many tasks including question answering, recommendation, and link prediction. Various amount of scholarly metadata have been made vailable as knowledge graphs from the diversity of data providers and agents. However, these high-quantities of data remain far from quality criteria in terms of completeness while growing at a rapid pace. Most of the attempts in completing such KGs are following traditional data digitization, harvesting and collaborative curation approaches. Whereas, advanced AI-related approaches such as embedding models - specifically designed for such tasks - are usually evaluated for standard benchmarks such as Freebase and Wordnet. The tailored nature of such datasets prevents those approaches to shed the lights on more accurate discoveries. Application of such models on domain-specific KGs takes advantage of enriched meta-data and provides accurate results where the underlying domain can enormously benefit. In this work, the TransE embedding model is reconciled for a specific link prediction task on scholarly metadata. The results show a significant shift in the accuracy and performance evaluation of the model on a dataset with scholarly metadata. The newly proposed version of TransE obtains 99.9% for link prediction task while original TransE gets 95%. In terms of accuracy and Hit@10, TransE outperforms other embedding models such as ComplEx, TransH and TransR experimented over scholarly knowledge graphs
Abstract (translated by Google)
URL
http://arxiv.org/abs/1904.12211