papers AI Learner
The Github is limit! Click to go to the new site.

Domain Agnostic Learning with Disentangled Representations

2019-04-28
Xingchao Peng, Zijun Huang, Ximeng Sun, Kate Saenko

Abstract

Unsupervised model transfer has the potential to greatly improve the generalizability of deep models to novel domains. Yet the current literature assumes that the separation of target data into distinct domains is known as a priori. In this paper, we propose the task of Domain-Agnostic Learning (DAL): How to transfer knowledge from a labeled source domain to unlabeled data from arbitrary target domains? To tackle this problem, we devise a novel Deep Adversarial Disentangled Autoencoder (DADA) capable of disentangling domain-specific features from class identity. We demonstrate experimentally that when the target domain labels are unknown, DADA leads to state-of-the-art performance on several image classification datasets.

Abstract (translated by Google)
URL

http://arxiv.org/abs/1904.12347

PDF

http://arxiv.org/pdf/1904.12347


Similar Posts

Comments