papers AI Learner
The Github is limit! Click to go to the new site.

Mixture of Pre-processing Experts Model for Noise Robust Deep Learning on Resource Constrained Platforms

2019-04-29
Taesik Na, Minah Lee, Burhan A. Mudassar, Priyabrata Saha, Jong Hwan Ko, Saibal Mukhopadhyay

Abstract

Deep learning on an edge device requires energy efficient operation due to ever diminishing power budget. Intentional low quality data during the data acquisition for longer battery life, and natural noise from the low cost sensor degrade the quality of target output which hinders adoption of deep learning on an edge device. To overcome these problems, we propose simple yet efficient mixture of pre-processing experts (MoPE) model to handle various image distortions including low resolution and noisy images. We also propose to use adversarially trained auto encoder as a pre-processing expert for the noisy images. We evaluate our proposed method for various machine learning tasks including object detection on MS-COCO 2014 dataset, multiple object tracking problem on MOT-Challenge dataset, and human activity classification on UCF 101 dataset. Experimental results show that the proposed method achieves better detection, tracking and activity classification accuracies under noise without sacrificing accuracies for the clean images. The overheads of our proposed MoPE are 0.67% and 0.17% in terms of memory and computation compared to the baseline object detection network.

Abstract (translated by Google)
URL

http://arxiv.org/abs/1904.12426

PDF

http://arxiv.org/pdf/1904.12426


Similar Posts

Comments