papers AI Learner
The Github is limit! Click to go to the new site.

Cross Domain Knowledge Learning with Dual-branch Adversarial Network for Vehicle Re-identification

2019-04-30
Jinjia Peng, Huibing Wang, Xianping Fu

Abstract

The widespread popularization of vehicles has facilitated all people’s life during the last decades. However, the emergence of a large number of vehicles poses the critical but challenging problem of vehicle re-identification (reID). Till now, for most vehicle reID algorithms, both the training and testing processes are conducted on the same annotated datasets under supervision. However, even a well-trained model will still cause fateful performance drop due to the severe domain bias between the trained dataset and the real-world scenes. To address this problem, this paper proposes a domain adaptation framework for vehicle reID (DAVR), which narrows the cross-domain bias by fully exploiting the labeled data from the source domain to adapt the target domain. DAVR develops an image-to-image translation network named Dual-branch Adversarial Network (DAN), which could promote the images from the source domain (well-labeled) to learn the style of target domain (unlabeled) without any annotation and preserve identity information from source domain. Then the generated images are employed to train the vehicle reID model by a proposed attention-based feature learning model with more reasonable styles. Through the proposed framework, the well-trained reID model has better domain adaptation ability for various scenes in real-world situations. Comprehensive experimental results have demonstrated that our proposed DAVR can achieve excellent performances on both VehicleID dataset and VeRi-776 dataset.

Abstract (translated by Google)
URL

http://arxiv.org/abs/1905.00006

PDF

http://arxiv.org/pdf/1905.00006


Similar Posts

Comments