papers AI Learner
The Github is limit! Click to go to the new site.

Compression of Acoustic Event Detection Models with Low-rank Matrix Factorization and Quantization Training

2019-05-02
Bowen Shi, Ming Sun, Chieh-Chi Kao, Viktor Rozgic, Spyros Matsoukas, Chao Wang

Abstract

In this paper, we present a compression approach based on the combination of low-rank matrix factorization and quantization training, to reduce complexity for neural network based acoustic event detection (AED) models. Our experimental results show this combined compression approach is very effective. For a three-layer long short-term memory (LSTM) based AED model, the original model size can be reduced to 1% with negligible loss of accuracy. Our approach enables the feasibility of deploying AED for resource-constraint applications.

Abstract (translated by Google)
URL

http://arxiv.org/abs/1905.00855

PDF

http://arxiv.org/pdf/1905.00855


Similar Posts

Comments