papers AI Learner
The Github is limit! Click to go to the new site.

Deep Tensor Factorization for Spatially-Aware Scene Decomposition

2019-05-03
Jonah Casebeer*, Michael Colomb*, Paris Smaragdis

Abstract

We propose a completely unsupervised method to understand audio scenes observed with random microphone arrangements by decomposing the scene into its constituent sources and their relative presence in each microphone. To this end, we formulate a neural network architecture that can be interpreted as a nonnegative tensor factorization of a multi-channel audio recording. By clustering on the learned network parameters corresponding to channel content, we can learn sources’ individual spectral dictionaries and their activation patterns over time. Our method allows us to leverage deep learning advances like end-to-end training, while also allowing stochastic minibatch training so that we can feasibly decompose realistic audio scenes that are intractable to decompose using standard methods. This neural network architecture is easily extensible to other kinds of tensor factorizations.

Abstract (translated by Google)
URL

http://arxiv.org/abs/1905.01391

PDF

http://arxiv.org/pdf/1905.01391


Comments

Content