Abstract
Automatic detection of cancer metastasis from whole slide images (WSIs) is a crucial step for following patient staging as well as prognosis. However, recent convolutional neural network (CNN) based approaches are struggling with the trade-off between accuracy and computation cost due to the difficulty in processing large-scale gigapixel images. To address this challenge, we propose a novel deep neural network, namely Pyramidal Feature Aggregation ScanNet (PFA-ScanNet) with pyramidal feature aggregation in both top-down and bottom-up paths. The discrimination capability of our detector is increased by leveraging the merit of contextual and spatial information from multi-scale features with larger receptive fields and less parameters. We also develop an extra decoder branch to synergistically learn the semantic information along with the detector, significantly improving the performance in recognizing the metastasis. Furthermore, a high-efficiency inference mechanism is designed with dense pooling layers, which allows dense and fast scanning for gigapixel WSI analysis. Our approach achieved the state-of-the-art FROC score of 89.1% on the Camelyon16 dataset, as well as competitive kappa score of 0.905 on the Camelyon17 leaderboard. In addition, our proposed method shows leading speed advantage over the state-of-the-art methods, which makes automatic analysis of breast cancer metastasis more applicable in the clinical usage.
Abstract (translated by Google)
URL
http://arxiv.org/abs/1905.01040