papers AI Learner
The Github is limit! Click to go to the new site.

Mapping Missing Population in Rural India: A Deep Learning Approach with Satellite Imagery

2019-05-04
Wenjie Hu, Jay Harshadbhai Patel, Zoe-Alanah Robert, Paul Novosad, Samuel Asher, Zhongyi Tang, Marshall Burke, David Lobell, Stefano Ermon

Abstract

Millions of people worldwide are absent from their country’s census. Accurate, current, and granular population metrics are critical to improving government allocation of resources, to measuring disease control, to responding to natural disasters, and to studying any aspect of human life in these communities. Satellite imagery can provide sufficient information to build a population map without the cost and time of a government census. We present two Convolutional Neural Network (CNN) architectures which efficiently and effectively combine satellite imagery inputs from multiple sources to accurately predict the population density of a region. In this paper, we use satellite imagery from rural villages in India and population labels from the 2011 SECC census. Our best model achieves better performance than previous papers as well as LandScan, a community standard for global population distribution.

Abstract (translated by Google)
URL

https://arxiv.org/abs/1905.02196

PDF

https://arxiv.org/pdf/1905.02196


Similar Posts

Comments