Abstract
The abstraction of musical structures (notes, melodies, chords, harmonic or rhythmic progressions, etc.) as mathematical objects in a geometrical space is one of the great accomplishments of contemporary music theory. Building on this foundation, I generalize the concept of musical spaces as networks and derive functional principles of compositional design by the direct analysis of the network topology. This approach provides a novel framework for the analysis and quantification of similarity of musical objects and structures, and suggests a way to relate such measures to the human perception of different musical entities. Finally, the analysis of a single work or a corpus of compositions as complex networks provides alternative ways of interpreting the compositional process of a composer by quantifying emergent behaviors with well-established statistical mechanics techniques. Interpreting the latter as probabilistic randomness in the network, I develop novel compositional design frameworks that are central to my own artistic research.
Abstract (translated by Google)
URL
http://arxiv.org/abs/1905.01842