Abstract
Extreme multi-label classification (XMC) aims to assign to an instance the most relevant subset of labels from a colossal label set. Due to modern applications that lead to massive label sets, the scalability of XMC has attracted much recent attention from both academia and industry. In this paper, we establish a three-stage framework to solve XMC efficiently, which includes 1) indexing the labels, 2) matching the instance to the relevant indices, and 3) ranking the labels from the relevant indices. This framework unifies many existing XMC approaches. Based on this framework, we propose a modular deep learning approach SLINMER: Semantic Label Indexing, Neural Matching, and Efficient Ranking. The label indexing stage of SLINMER can adopt different semantic label representations leading to different configurations of SLINMER. Empirically, we demonstrate that several individual configurations of SLINMER achieve superior performance than the state-of-the-art XMC approaches on several benchmark datasets. Moreover, by ensembling those configurations, SLINMER can achieve even better results. In particular, on a Wiki dataset with around 0.5 millions of labels, the precision@1 is increased from 61% to 67%.
Abstract (translated by Google)
URL
https://arxiv.org/abs/1905.02331