papers AI Learner
The Github is limit! Click to go to the new site.

Grand Challenge of 106-Point Facial Landmark Localization

2019-05-09
Yinglu Liu, Hao Shen, Yue Si, Xiaobo Wang, Xiangyu Zhu, Hailin Shi, Zhibin Hong, Hanqi Guo, Ziyuan Guo, Yanqin Chen, Bi Li, Teng Xi, Jun Yu, Haonian Xie, Guochen Xie, Mengyan Li, Qing Lu, Zengfu Wang, Shenqi Lai, Zhenhua Chai, Xiaoming Wei

Abstract

Facial landmark localization is a very crucial step in numerous face related applications, such as face recognition, facial pose estimation, face image synthesis, etc. However, previous competitions on facial landmark localization (i.e., the 300-W, 300-VW and Menpo challenges) aim to predict 68-point landmarks, which are incompetent to depict the structure of facial components. In order to overcome this problem, we construct a challenging dataset, named JD-landmark. Each image is manually annotated with 106-point landmarks. This dataset covers large variations on pose and expression, which brings a lot of difficulties to predict accurate landmarks. We hold a 106-point facial landmark localization competition1 on this dataset in conjunction with IEEE International Conference on Multimedia and Expo (ICME) 2019. The purpose of this competition is to discover effective and robust facial landmark localization approaches.

Abstract (translated by Google)
URL

http://arxiv.org/abs/1905.03469

PDF

http://arxiv.org/pdf/1905.03469


Similar Posts

Comments