papers AI Learner
The Github is limit! Click to go to the new site.

Implementation of Fuzzy C-Means and Possibilistic C-Means Clustering Algorithms, Cluster Tendency Analysis and Cluster Validation

2019-05-12
Md. Abu Bakr Siddique, Rezoana Bente Arif, Mohammad Mahmudur Rahman Khan, Zahidun Ashrafi

Abstract

In this paper, several two-dimensional clustering scenarios are given. In those scenarios, soft partitioning clustering algorithms (Fuzzy C-means (FCM) and Possibilistic c-means (PCM)) are applied. Afterward, VAT is used to investigate the clustering tendency visually, and then in order of checking cluster validation, three types of indices (e.g., PC, DI, and DBI) were used. After observing the clustering algorithms, it was evident that each of them has its limitations; however, PCM is more robust to noise than FCM as in case of FCM a noise point has to be considered as a member of any of the cluster.

Abstract (translated by Google)
URL

http://arxiv.org/abs/1809.08417

PDF

http://arxiv.org/pdf/1809.08417


Similar Posts

Comments