Abstract
Garbage and waste disposal is one of the biggest challenges currently faced by mankind. Proper waste disposal and recycling is a must in any sustainable community, and in many coastal areas there is significant water pollution in the form of floating or submerged garbage. This is called marine debris. Submerged marine debris threatens marine life, and for shallow coastal areas, it can also threaten fishing vessels [Iñiguez et al. 2016, Renewable and Sustainable Energy Reviews]. Submerged marine debris typically stays in the environment for a long time (20+ years), and consists of materials that can be recycled, such as metals, plastics, glass, etc. Many of these items should not be disposed in water bodies as this has a negative effect in the environment and human health. This thesis performs a comprehensive evaluation on the use of DNNs for the problem of marine debris detection in FLS images, as well as related problems such as image classification, matching, and detection proposals. We do this in a dataset of 2069 FLS images that we captured with an ARIS Explorer 3000 sensor on marine debris objects lying in the floor of a small water tank. The objects we used to produce this dataset contain typical household marine debris and distractor marine objects (tires, hooks, valves, etc), divided in 10 classes plus a background class. Our results show that for the evaluated tasks, DNNs are a superior technique than the corresponding state of the art. There are large gains particularly for the matching and detection proposal tasks. We also study the effect of sample complexity and object size in many tasks, which is valuable information for practitioners. We expect that our results will advance the objective of using Autonomous Underwater Vehicles to automatically survey, detect and collect marine debris from underwater environments.
Abstract (translated by Google)
URL
https://arxiv.org/abs/1905.05241