Abstract
Tremendous headway has been made in the field of 3D hand pose estimation but the 3D depth cameras are usually inaccessible. We propose a model to recognize American Sign Language alphabet from RGB images. Images for the training were resized and pre-processed before training the Deep Neural Network. The model was trained on a squeezenet architecture to make it capable of running on mobile devices with an accuracy of 83.29%.
Abstract (translated by Google)
URL
https://arxiv.org/abs/1905.05487