papers AI Learner
The Github is limit! Click to go to the new site.

Population Based Augmentation: Efficient Learning of Augmentation Policy Schedules

2019-05-14
Daniel Ho, Eric Liang, Ion Stoica, Pieter Abbeel, Xi Chen

Abstract

A key challenge in leveraging data augmentation for neural network training is choosing an effective augmentation policy from a large search space of candidate operations. Properly chosen augmentation policies can lead to significant generalization improvements; however, state-of-the-art approaches such as AutoAugment are computationally infeasible to run for the ordinary user. In this paper, we introduce a new data augmentation algorithm, Population Based Augmentation (PBA), which generates nonstationary augmentation policy schedules instead of a fixed augmentation policy. We show that PBA can match the performance of AutoAugment on CIFAR-10, CIFAR-100, and SVHN, with three orders of magnitude less overall compute. On CIFAR-10 we achieve a mean test error of 1.46%, which is a slight improvement upon the current state-of-the-art. The code for PBA is open source and is available at this https URL.

Abstract (translated by Google)
URL

https://arxiv.org/abs/1905.05393

PDF

https://arxiv.org/pdf/1905.05393


Similar Posts

Comments