Abstract
Understanding human actions is a crucial problem for service robots. However, the general trend in Action Recognition is developing and testing these systems on structured datasets. That’s why this work presents a practical Skeleton-based Action Recognition framework which can be used in realistic scenarios. Our results show that although non-augmented and non-normalized data may yield comparable results on the test split of the dataset, it is far from being useful on another dataset which is a manually collected data.
Abstract (translated by Google)
URL
https://arxiv.org/abs/1905.05420