papers AI Learner
The Github is limit! Click to go to the new site.

Automatic Long-Term Deception Detection in Group Interaction Videos

2019-05-15
Chongyang Bai, Maksim Bolonkin, Judee Burgoon, Chao Chen, Norah Dunbar, Bharat Singh, V. S. Subrahmanian, Zhe Wu

Abstract

Most work on automated deception detection (ADD) in video has two restrictions: (i) it focuses on a video of one person, and (ii) it focuses on a single act of deception in a one or two minute video. In this paper, we propose a new ADD framework which captures long term deception in a group setting. We study deception in the well-known Resistance game (like Mafia and Werewolf) which consists of 5-8 players of whom 2-3 are spies. Spies are deceptive throughout the game (typically 30-65 minutes) to keep their identity hidden. We develop an ensemble predictive model to identify spies in Resistance videos. We show that features from low-level and high-level video analysis are insufficient, but when combined with a new class of features that we call LiarRank, produce the best results. We achieve AUCs of over 0.70 in a fully automated setting. Our demo can be found at this http URL

Abstract (translated by Google)
URL

http://arxiv.org/abs/1905.08617

PDF

http://arxiv.org/pdf/1905.08617


Similar Posts

Comments