papers AI Learner
The Github is limit! Click to go to the new site.

A Regularized Opponent Model with Maximum Entropy Objective

2019-05-17
Zheng Tian, Ying Wen, Zhichen Gong, Faiz Punakkath, Shihao Zou, Jun Wang

Abstract

In a single-agent setting, reinforcement learning (RL) tasks can be cast into an inference problem by introducing a binary random variable o, which stands for the “optimality”. In this paper, we redefine the binary random variable o in multi-agent setting and formalize multi-agent reinforcement learning (MARL) as probabilistic inference. We derive a variational lower bound of the likelihood of achieving the optimality and name it as Regularized Opponent Model with Maximum Entropy Objective (ROMMEO). From ROMMEO, we present a novel perspective on opponent modeling and show how it can improve the performance of training agents theoretically and empirically in cooperative games. To optimize ROMMEO, we first introduce a tabular Q-iteration method ROMMEO-Q with proof of convergence. We extend the exact algorithm to complex environments by proposing an approximate version, ROMMEO-AC. We evaluate these two algorithms on the challenging iterated matrix game and differential game respectively and show that they can outperform strong MARL baselines.

Abstract (translated by Google)
URL

http://arxiv.org/abs/1905.08087

PDF

http://arxiv.org/pdf/1905.08087


Similar Posts

Comments