papers AI Learner
The Github is limit! Click to go to the new site.

Alpha MAML: Adaptive Model-Agnostic Meta-Learning

2019-05-17
Harkirat Singh Behl, Atılım Güneş Baydin, Philip H.S. Torr

Abstract

Model-agnostic meta-learning (MAML) is a meta-learning technique to train a model on a multitude of learning tasks in a way that primes the model for few-shot learning of new tasks. The MAML algorithm performs well on few-shot learning problems in classification, regression, and fine-tuning of policy gradients in reinforcement learning, but comes with the need for costly hyperparameter tuning for training stability. We address this shortcoming by introducing an extension to MAML, called Alpha MAML, to incorporate an online hyperparameter adaptation scheme that eliminates the need to tune meta-learning and learning rates. Our results with the Omniglot database demonstrate a substantial reduction in the need to tune MAML training hyperparameters and improvement to training stability with less sensitivity to hyperparameter choice.

Abstract (translated by Google)
URL

http://arxiv.org/abs/1905.07435

PDF

http://arxiv.org/pdf/1905.07435


Similar Posts

Comments