papers AI Learner
The Github is limit! Click to go to the new site.

Story Ending Prediction by Transferable BERT


Abstract

Recent advances, such as GPT and BERT, have shown success in incorporating a pre-trained transformer language model and fine-tuning operation to improve downstream NLP systems. However, this framework still has some fundamental problems in effectively incorporating supervised knowledge from other related tasks. In this study, we investigate a transferable BERT (TransBERT) training framework, which can transfer not only general language knowledge from large-scale unlabeled data but also specific kinds of knowledge from various semantically related supervised tasks, for a target task. Particularly, we propose utilizing three kinds of transfer tasks, including natural language inference, sentiment classification, and next action prediction, to further train BERT based on a pre-trained model. This enables the model to get a better initialization for the target task. We take story ending prediction as the target task to conduct experiments. The final result, an accuracy of 91.8%, dramatically outperforms previous state-of-the-art baseline methods. Several comparative experiments give some helpful suggestions on how to select transfer tasks. Error analysis shows what are the strength and weakness of BERT-based models for story ending prediction.

Abstract (translated by Google)
URL

http://arxiv.org/abs/1905.07504

PDF

http://arxiv.org/pdf/1905.07504


Similar Posts

Comments