papers AI Learner
The Github is limit! Click to go to the new site.

Brain-mediated Transfer Learning of Convolutional Neural Networks

2019-05-24
Satoshi Nishida, Yusuke Nakano, Antoine Blanc, Shinji Nishimoto

Abstract

Human flexible cognition and behavior indicate that the human brain can effectively use its internal feature representations acquired through limited experiences for new experiences in different domains. This function is analogous to transfer learning (TL) in the field of machine learning. TL uses a well-trained feature space in a specific task domain to improve performance in new tasks with insufficient training data. TL with rich feature representations, such as features of convolutional neural networks (CNNs), shows high generalization ability across different task domains. However, such TL is still insufficient in making machine learning attain generalization ability comparable to that of the human brain. To address this, we introduce a method for TL mediated by human brains to improve the performance of TL especially on pattern recognition in which human high-level cognition is considered. Our method transforms feature representations of audiovisual inputs in CNNs into those in activation patterns of individual brains via their association learned ahead using measured brain responses. Then, to estimate labels reflecting human cognition and behavior induced by the audiovisual inputs, the transformed representations are used for TL. We demonstrate that our brain-mediated TL (BTL) shows higher performance in the label estimation than the standard TL. In addition, we illustrate that the estimations mediated by different brains vary from brain to brain, and the variability reflects the individual variability in perception. Thus, our BTL provides a framework to improve the generalization ability of machine-learning feature representations and enable machine learning to estimate human-like cognition and behavior, including individual variability.

Abstract (translated by Google)
URL

http://arxiv.org/abs/1905.10037

PDF

http://arxiv.org/pdf/1905.10037


Similar Posts

Comments