Abstract
Machine learning models are vulnerable to adversarial examples. Iterative adversarial training has shown promising results against strong white-box attacks. However, adversarial training is very expensive, and every time a model needs to be protected, such expensive training scheme needs to be performed. In this paper, we propose to apply iterative adversarial training scheme to an external auto-encoder, which once trained can be used to protect other models directly. We empirically show that our model outperforms other purifying-based methods against white-box attacks, and transfers well to directly protect other base models with different architectures.
Abstract (translated by Google)
URL
http://arxiv.org/abs/1905.10729