papers AI Learner
The Github is limit! Click to go to the new site.

Next-Generation Inertial Navigation Computation Based on Functional Iteration

2019-05-28
Yuanxin Wu

Abstract

Inertial navigation computation is to acquire the attitude, velocity and position information of a moving body by integrating inertial measurements from gyroscopes and accelerometers. Over half a century has witnessed great efforts in coping with the motion non-commutativity errors to accurately compute the navigation information as far as possible, so as not to comprise the quality measurements of inertial sensors. Highly dynamic applications and the forthcoming cold-atom precision inertial navigation systems demand for even more accurate inertial navigation computation. The paper gives birth to an ultimate inertial navigation algorithm to fulfill that demand, named the iNavFIter, which is based on a brand new framework of functional iterative integration and Chebyshev polynomials. Remarkably, the proposed iNavFIter reduces the non-commutativity errors to almost machine precision, namely, the coning/sculling/scrolling errors that have perplexed the navigation community for long. Numerical results are provided to demonstrate its accuracy superiority over the-state-of-the-art inertial navigation algorithms at affordable computation cost.

Abstract (translated by Google)
URL

https://arxiv.org/abs/1905.11615

PDF

https://arxiv.org/pdf/1905.11615


Comments

Content