Abstract
Relations amongst entities play a central role in image understanding. Due to the combinatorial complexity of modeling (subject, predicate, object) relation triplets, it is crucial to develop a method that can not only recognize seen relations, but also generalize well to unseen cases. Inspired by Visual Translation Embedding network (VTransE), we propose the Union Visual Translation Embedding network (UVTransE) to capture both common and rare relations with better accuracy. UVTransE maps the subject, the object, and the union (subject, object) image regions into a low-dimensional relation space where a predicate can be expressed as a vector subtraction, such that predicate $\approx$ union (subject, object) $-$ subject $-$ object. We present a comprehensive evaluation of our method on multiple challenging benchmarks: the Visual Relationship Detection dataset (VRD); UnRel dataset for rare and unusual relations; two subsets of Visual Genome; and the Open Images Challenge. Our approach decisively outperforms VTransE and comes close to or exceeds the state of the art across a range of settings, from small-scale to large-scale datasets, from common to previously unseen relations. On Visual Genome and Open Images, it also achieves promising results on the recently introduced task of scene graph generation.
Abstract (translated by Google)
URL
https://arxiv.org/abs/1905.11624