papers AI Learner
The Github is limit! Click to go to the new site.

A Novel Multi-Attention Driven System For Multi-Label Remote Sensing Image Classification

2019-05-29
Gencer Sumbul, Begüm Demir

Abstract

This paper presents a novel multi-attention driven system that jointly exploits Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) in the context of multi-label remote sensing (RS) image classification. The proposed system consists of four main modules. The first module aims to extract preliminary local descriptors of RS image bands that can be associated to different spatial resolutions. To this end, we introduce a K-Branch CNN, in which each branch extracts descriptors of image bands that have the same spatial resolution. The second module aims to model spatial relationship among local descriptors. This is achieved by a bidirectional RNN architecture, in which Long Short-Term Memory nodes enrich local descriptors by considering spatial relationships of local areas (image patches). The third module aims to define multiple attention scores for local descriptors. This is achieved by a novel patch-based multi-attention mechanism that takes into account the joint occurrence of multiple land-cover classes and provides the attention-based local descriptors. The last module exploits these descriptors for multi-label RS image classification. Experimental results obtained on the BigEarthNet that is a large-scale Sentinel-2 benchmark archive show the effectiveness of the proposed method compared to a state of the art method.

Abstract (translated by Google)
URL

http://arxiv.org/abs/1902.11274

PDF

http://arxiv.org/pdf/1902.11274


Similar Posts

Comments