papers AI Learner
The Github is limit! Click to go to the new site.

Towards Coherent and Cohesive Long-form Text Generation

2019-05-29
Woon Sang Cho, Pengchuan Zhang, Yizhe Zhang, Xiujun Li, Michel Galley, Chris Brockett, Mengdi Wang, Jianfeng Gao

Abstract

Generating coherent and cohesive long-form texts is a challenging task. Previous works relied on large amounts of human-generated texts to train neural language models. However, few attempted to explicitly improve neural language models from the perspectives of coherence and cohesion. In this work, we propose a new neural language model that is equipped with two neural discriminators which provide feedback signals at the levels of sentence (cohesion) and paragraph (coherence). Our model is trained using a simple yet efficient variant of policy gradient, called negative-critical sequence training, which is proposed to eliminate the need of training a separate critic for estimating baseline. Results demonstrate the effectiveness of our approach, showing improvements over the strong baseline – recurrent attention-based bidirectional MLE-trained neural language model.

Abstract (translated by Google)
URL

http://arxiv.org/abs/1811.00511

PDF

http://arxiv.org/pdf/1811.00511


Similar Posts

Comments