papers AI Learner
The Github is limit! Click to go to the new site.

2019-05-31

Abstract

This study’s goal is to create a model of sentiment analysis on a 2000 rows IMDB movie comments and 3200 Twitter data by using machine learning and vector space techniques; positive or negative preliminary information about the text is to provide. In the study, a vector space was created in the KNIME Analytics platform, and a classification study was performed on this vector space by Decision Trees, Na"ive Bayes and Support Vector Machines classification algorithms. The conclusions obtained were compared in terms of each algorithms. The classification results for IMDB movie comments are obtained as 94,00%, 73,20%, and 85,50% by Decision Tree, Naive Bayes and SVM algorithms. The classification results for Twitter data set are presented as 82,76%, 75,44% and 72,50% by Decision Tree, Naive Bayes SVM algorithms as well. It is seen that the best classification results presented in both data sets are which calculated by SVM algorithm.

Abstract (translated by Google)
URL

http://arxiv.org/abs/1903.11983

PDF

http://arxiv.org/pdf/1903.11983


Comments

Content