In this paper, we introduce Iterative Text Summarization (ITS), an iteration-based model for supervised extractive text summarization, inspired by the observation that it is often necessary for a human to read an article multiple times in order to fully understand and summarize its contents. Current summarization approaches read through a document only once to generate a document representation, resulting in a sub-optimal representation. To address this issue we introduce a model which iteratively polishes the document representation on many passes through the document. As part of our model, we also introduce a selective reading mechanism that decides more accurately the extent to which each sentence in the model should be updated. Experimental results on the CNN/DailyMail and DUC2002 datasets demonstrate that our model significantly outperforms state-of-the-art extractive systems when evaluated by machines and by humans.
http://arxiv.org/abs/1809.10324
Hiring robots for the workplaces is a challenging task as robots have to cater to customer demands, follow organizational protocols and behave with social etiquette. In this study, we propose to have a humanoid social robot, Nadine, as a customer service agent in an open social work environment. The objective of this study is to analyze the effects of humanoid robots on customers at work environment, and see if it can handle social scenarios. We propose to evaluate these objectives through two modes, namely, survey questionnaire and customer feedback. We also propose a novel approach to analyze customer feedback data (text) using sentic computing methods. Specifically, we employ aspect extraction and sentiment analysis to analyze the data. From our framework, we detect sentiment associated to the aspects that mainly concerned the customers during their interaction. This allows us to understand customers expectations and current limitations of robots as employees.
http://arxiv.org/abs/1905.08937
In this paper, we propose a trainable multiplication layer (TML) for a neural network that can be used to calculate the multiplication between the input features. Taking an image as an input, the TML raises each pixel value to the power of a weight and then multiplies them, thereby extracting the higher-order local auto-correlation from the input image. The TML can also be used to extract co-occurrence from the feature map of a convolutional network. The training of the TML is formulated based on backpropagation with constraints to the weights, enabling us to learn discriminative multiplication patterns in an end-to-end manner. In the experiments, the characteristics of the TML are investigated by visualizing learned kernels and the corresponding output features. The applicability of the TML for classification and neural network interpretation is also evaluated using public datasets.
http://arxiv.org/abs/1905.12871
In recent years, impressive progress has been made in the design of implicit probabilistic models via Generative Adversarial Networks (GAN) and its extension, the Conditional GAN (CGAN). Excellent solutions have been demonstrated mostly in image processing applications which involve large, continuous output spaces. There is almost no application of these powerful tools to problems having small dimensional output spaces. Regression problems involving the inductive learning of a map, $y=f(x)$, $f:\mathbb{R} \rightarrow \mathbb{R}^m$, with $m$ small (e.g., $m=1$ or just a few) is one good case in point. The standard approach to solve regression problems is to probabilistically model the output $y$ as the sum of a mean function $m(x)$ and a noise variable $\sigma$; it is also usual to take the noise to be a Gaussian. These are done for convenience sake so that the likelihood of observed data is expressible in closed form. In the real world, on the other hand, stochasticity of the output is usually caused by missing or noisy input variables. Such a real world situation is best represented using an implicit model in which an extra noise vector, $z$ is included with $x$ as input. CGAN is naturally suited to design such implicit models. This paper makes the first step in this direction. Through several artificial and real world datasets, we demonstrate CGAN to be an effective approach for solving regression problems. We compare against Gaussian Processes and show that CGAN has excellent output likelihood properties, and hence, it models noise in a better way.
https://arxiv.org/abs/1905.12868
Deep learning has enabled traditional reinforcement learning methods to deal with high-dimensional problems. However, one of the disadvantages of deep reinforcement learning methods is the limited exploration capacity of learning agents. In this paper, we introduce an approach that integrates human strategies to increase the exploration capacity of multiple deep reinforcement learning agents. We also report the development of our own multi-agent environment called Multiple Tank Defence to simulate the proposed approach. The results show the significant performance improvement of multiple agents that have learned cooperatively with human strategies. This implies that there is a critical need for human intellect teamed with machines to solve complex problems. In addition, the success of this simulation indicates that our multi-agent environment can be used as a testbed platform to develop and validate other multi-agent control algorithms.
http://arxiv.org/abs/1806.04562
Semantically controlled neural response generation on limited-domain has achieved great performance. However, moving towards multi-domain large-scale scenarios is shown to be difficult because the possible combinations of semantic inputs grow exponentially with the number of domains. To alleviate such scalability issue, we exploit the structure of dialog acts to build a multi-layer hierarchical graph, where each act is represented as a root-to-leaf route on the graph. Then, we incorporate such graph structure prior as an inductive bias to build a hierarchical disentangled self-attention network, where we disentangle attention heads to model designated nodes on the dialog act graph. By activating different (disentangled) heads at each layer, combinatorially many dialog act semantics can be modeled to control the neural response generation. On the large-scale Multi-Domain-WOZ dataset, our algorithm can yield an improvement of over 5.0 BLEU score, and in human evaluation, it also significantly outperforms other baselines over various metrics including consistency, etc.
http://arxiv.org/abs/1905.12866
Generating high-quality and interpretable adversarial examples in the text domain is a much more daunting task than it is in the image domain. This is due partly to the discrete nature of text, partly to the problem of ensuring that the adversarial examples are still probable and interpretable, and partly to the problem of maintaining label invariance under input perturbations. In order to address some of these challenges, we introduce sparse projected gradient descent (SPGD), a new approach to crafting interpretable adversarial examples for text. SPGD imposes a directional regularization constraint on input perturbations by projecting them onto the directions to nearby word embeddings with highest cosine similarities. This constraint ensures that perturbations move each word embedding in an interpretable direction (i.e., towards another nearby word embedding). Moreover, SPGD imposes a sparsity constraint on perturbations at the sentence level by ignoring word-embedding perturbations whose norms are below a certain threshold. This constraint ensures that our method changes only a few words per sequence, leading to higher quality adversarial examples. Our experiments with the IMDB movie review dataset show that the proposed SPGD method improves adversarial example interpretability and likelihood (evaluated by average per-word perplexity) compared to state-of-the-art methods, while suffering little to no loss in training performance.
http://arxiv.org/abs/1905.12864
Generic object detection is one of the most fundamental and important problems in computer vision. When it comes to large scale object detection for thousands of categories, it is unpractical to provide all the bounding box labels for each category. In this paper, we propose a novel hierarchical structure and joint training framework for large scale semi-supervised object detection. First, we utilize the relationships among target categories to model a hierarchical network to further improve the performance of recognition. Second, we combine bounding-box-level labeled images and image-level labeled images together for joint training, and the proposed method can be easily applied in current two-stage object detection framework with excellent performance. Experimental results show that the proposed large scale semi-supervised object detection network obtains the state-of-the-art performance, with the mAP of 38.1% on the ImageNet detection validation dataset.
http://arxiv.org/abs/1905.12863
This paper sets a new foundation for data-driven inertial navigation research, where the task is the estimation of positions and orientations of a moving subject from a sequence of IMU sensor measurements. More concretely, the paper presents 1) a new benchmark containing more than 40 hours of IMU sensor data from 100 human subjects with ground-truth 3D trajectories under natural human motions; 2) novel neural inertial navigation architectures, making significant improvements for challenging motion cases; and 3) qualitative and quantitative evaluations of the competing methods over three inertial navigation benchmarks. We will share the code and data to promote further research.
http://arxiv.org/abs/1905.12853
We study the problem of subspace tracking in the presence of missing data (ST-miss). In recent work, we studied a related problem called robust ST. In this work, we show that a simple modification of our robust ST solution also provably solves ST-miss and robust ST-miss. To our knowledge, our result is the first `complete’ guarantee for ST-miss. This means that we can prove that under assumptions on only the algorithm inputs, the output subspace estimates are close to the true data subspaces at all times. Our guarantees hold under mild and easily interpretable assumptions, and allow the underlying subspace to change with time in a piecewise constant fashion. In contrast, all existing guarantees for ST are partial results and assume a fixed unknown subspace. Extensive numerical experiments are shown to back up our theoretical claims. Finally, our solution can be interpreted as a provably correct mini-batch and memory-efficient solution to low-rank Matrix Completion (MC).
http://arxiv.org/abs/1810.03051
Robust real-world learning should benefit from both demonstrations and interactions with the environment. Current approaches to learning from demonstration and reward perform supervised learning on expert demonstration data and use reinforcement learning to further improve performance based on the reward received from the environment. These tasks have divergent losses which are difficult to jointly optimize and such methods can be very sensitive to noisy demonstrations. We propose a unified reinforcement learning algorithm, Normalized Actor-Critic (NAC), that effectively normalizes the Q-function, reducing the Q-values of actions unseen in the demonstration data. NAC learns an initial policy network from demonstrations and refines the policy in the environment, surpassing the demonstrator’s performance. Crucially, both learning from demonstration and interactive refinement use the same objective, unlike prior approaches that combine distinct supervised and reinforcement losses. This makes NAC robust to suboptimal demonstration data since the method is not forced to mimic all of the examples in the dataset. We show that our unified reinforcement learning algorithm can learn robustly and outperform existing baselines when evaluated on several realistic driving games.
http://arxiv.org/abs/1802.05313
We take initial steps in studying PAC-MDP algorithms with limited adaptivity, that is, algorithms that change its exploration policy as infrequently as possible during regret minimization. This is motivated by the difficulty of running fully adaptive algorithms in real-world applications (such as medical domains), and we propose to quantify adaptivity using the notion of local switching cost. Our main contribution, Q-Learning with UCB2 exploration, is a model-free algorithm for H-step episodic MDP that achieves sublinear regret whose local switching cost in K episodes is $O(H^3SA\log K)$, and we provide a lower bound of $\Omega(HSA)$ on the local switching cost for any no-regret algorithm. Our algorithm can be naturally adapted to the concurrent setting, which yields nontrivial results that improve upon prior work in certain aspects.
http://arxiv.org/abs/1905.12849
Conversational machine comprehension (CMC) requires understanding the context of multi-turn dialogue. Using BERT, a pre-training language model, has been successful for single-turn machine comprehension, while modeling multiple turns of question answering with BERT has not been established because BERT has a limit on the number and the length of input sequences. In this paper, we propose a simple but effective method with BERT for CMC. Our method uses BERT to encode a paragraph independently conditioned with each question and each answer in a multi-turn context. Then, the method predicts an answer on the basis of the paragraph representations encoded with BERT. The experiments with representative CMC datasets, QuAC and CoQA, show that our method outperformed recently published methods (+0.8 F1 on QuAC and +2.1 F1 on CoQA). In addition, we conducted a detailed analysis of the effects of the number and types of dialogue history on the accuracy of CMC, and we found that the gold answer history, which may not be given in an actual conversation, contributed to the model performance most on both datasets.
http://arxiv.org/abs/1905.12848
Visible watermark plays an important role in image copyright protection and the robustness of a visible watermark to an attack is shown to be essential. To evaluate and improve the effectiveness of watermark, watermark removal attracts increasing attention and becomes a hot research top. Current methods cast the watermark removal as an image-to-image translation problem where the encode-decode architectures with pixel-wise loss are adopted to transfer the transparent watermarked pixels into unmarked pixels. However, when a number of realistic images are presented, the watermarks are more likely to be unknown and diverse (i.e., the watermarks might be opaque or semi-transparent; the category and pattern of watermarks are unknown). When applying existing methods to the real-world scenarios, they mostly can not satisfactorily reconstruct the hidden information obscured under the complex and various watermarks (i.e., the residual watermark traces remain and the reconstructed images lack reality). To address this difficulty, in this paper, we present a new watermark processing framework using the conditional generative adversarial networks (cGANs) for visible watermark removal in the real-world application. The proposed method \whh{enables} the watermark removal solution \whh{to be more} closed to the photo-realistic reconstruction using a patch-based discriminator conditioned on the watermarked images, which is adversarially trained to differentiate the difference between the recovered images and original watermark-free images. Extensive experimental results on a large-scale visible watermark dataset demonstrate the effectiveness of the proposed method and clearly indicate that our proposed approach can produce more photo-realistic and convincing results compared with the state-of-the-art methods.
http://arxiv.org/abs/1905.12845
Street architectures play an essential role in city image and streetscape analysing. However, existing approaches are all supervised which require costly labeled data. To solve this, we propose a street architectural unsupervised classification framework based on Information maximizing Generative Adversarial Nets (InfoGAN), in which we utilize the auxiliary distribution $Q$ of InfoGAN as an unsupervised classifier. Experiments on database of true street view images in Nanjing, China validate the practicality and accuracy of our framework. Furthermore, we draw a series of heuristic conclusions from the intrinsic information hidden in true images. These conclusions will assist planners to know the architectural categories better.
http://arxiv.org/abs/1905.12844
Deep metric learning aims at learning the distance metric between pair of samples, through the deep neural networks to extract the semantic feature embeddings where similar samples are close to each other while dissimilar samples are farther apart. A large amount of loss functions based on pair distances have been presented in the literature for guiding the training of deep metric learning. In this paper, we unify them in a general pair-based weighting loss function, where the minimizing objective loss is just the distances weighting of informative pairs. The general pair-based weighting loss includes two main aspects, (1) samples mining and (2) pairs weighting. Samples mining aims at selecting the informative positive and negative pair sets to exploit the structured relationship of samples in a mini-batch and also reduce the number of non-trivial pairs. Pair weighting aims at assigning different weights for different pairs according to the pair distances for discriminatively training the network. We detailedly review those existing pair-based losses inline with our general loss function, and explore some possible methods from the perspective of samples mining and pairs weighting. Finally, extensive experiments on three image retrieval datasets show that our general pair-based weighting loss obtains new state-of-the-art performance, demonstrating the effectiveness of the pair-based samples mining and pairs weighting for deep metric learning.
http://arxiv.org/abs/1905.12837
Generative adversarial nets (GAN) has been successfully introduced for generating text to alleviate the exposure bias. However, discriminators in these models only evaluate the entire sequence, which causes feedback sparsity and mode collapse. To tackle these problems, we propose a novel mechanism. It first segments the entire sequence into several sub-sequences. Then these sub-sequences, together with the entire sequence, are evaluated individually by the discriminator. At last these feedback signals are all used to guide the learning of GAN. This mechanism learns the generation of both the entire sequence and the sub-sequences simultaneously. Learning to generate sub-sequences is easy and is helpful in generating an entire sequence. It is easy to improve the existing GAN-based models with this mechanism. We rebuild three previous well-designed models with our mechanism, and the experimental results on benchmark data show these models are improved significantly, the best one outperforms the state-of-the-art model.\footnote[1]{All code and data are available at https://github.com/liyzcj/seggan.git
http://arxiv.org/abs/1905.12835
In this paper, we focus on model generalization and adaptation for cross-domain person re-identification (Re-ID). Unlike existing cross-domain Re-ID methods, leveraging the auxiliary information of those unlabeled target-domain data, we aim at enhancing the model generalization and adaptation by discriminative feature learning, and directly exploiting a pre-trained model to new domains (datasets) without any utilization of the information from target domains. To address the discriminative feature learning problem, we surprisingly find that simply introducing the attention mechanism to adaptively extract the person features for every domain is of great effectiveness. We adopt two popular type of attention mechanisms, long-range dependency based attention and direct generation based attention. Both of them can perform the attention via spatial or channel dimensions alone, even the combination of spatial and channel dimensions. The outline of different attentions are well illustrated. Moreover, we also incorporate the attention results into the final output of model through skip-connection to improve the features with both high and middle level semantic visual information. In the manner of directly exploiting a pre-trained model to new domains, the attention incorporation method truly could enhance the model generalization and adaptation to perform the cross-domain person Re-ID. We conduct extensive experiments between three large datasets, Market-1501, DukeMTMC-reID and MSMT17. Surprisingly, introducing only attention can achieve state-of-the-art performance, even much better than those cross-domain Re-ID methods utilizing auxiliary information from the target domain.
http://arxiv.org/abs/1905.12830
We propose Gaussian optimal transport for Image style transfer in an Encoder/Decoder framework. Optimal transport for Gaussian measures has closed forms Monge mappings from source to target distributions. Moreover interpolates between a content and a style image can be seen as geodesics in the Wasserstein Geometry. Using this insight, we show how to mix different target styles , using Wasserstein barycenter of Gaussian measures. Since Gaussians are closed under Wasserstein barycenter, this allows us a simple style transfer and style mixing and interpolation. Moreover we show how mixing different styles can be achieved using other geodesic metrics between gaussians such as the Fisher Rao metric, while the transport of the content to the new interpolate style is still performed with Gaussian OT maps. Our simple methodology allows to generate new stylized content interpolating between many artistic styles. The metric used in the interpolation results in different stylizations.
http://arxiv.org/abs/1905.12828
Inspired by the recent successes of deep learning on Computer Vision and Natural Language Processing, we present a deep learning approach for recognizing scanned receipts. The recognition system has two main modules: text detection based on Connectionist Text Proposal Network and text recognition based on Attention-based Encoder-Decoder. We also proposed pre-processing to extract receipt area and OCR verification to ignore handwriting. The experiments on the dataset of the Robust Reading Challenge on Scanned Receipts OCR and Information Extraction 2019 demonstrate that the accuracies were improved by integrating the pre-processing and the OCR verification. Our recognition system achieved 71.9% of the F1 score for detection and recognition task.
http://arxiv.org/abs/1905.12817
The development of models for learning music similarity and feature extraction from audio media files is an increasingly important task for the entertainment industry. This work proposes a novel music classification model based on metric learning and feature extraction from MP3 audio files. The metric learning process considers the learning of a set of parameterized distances employing a structured prediction approach from a set of MP3 audio files containing several music genres. The main objective of this work is to make possible learning a personalized metric for each customer. To extract the acoustic information we use the Mel-Frequency Cepstral Coefficient (MFCC) and make a dimensionality reduction with the use of Principal Components Analysis. We attest the model validity performing a set of experiments and comparing the training and testing results with baseline algorithms, such as K-means and Soft Margin Linear Support Vector Machine (SVM). Experiments show promising results and encourage the future development of an online version of the learning model.
http://arxiv.org/abs/1905.12804
Gender bias exists in natural language datasets which neural language models tend to learn, resulting in biased text generation. In this research, we propose a debiasing approach based on the loss function modification. We introduce a new term to the loss function which attempts to equalize the probabilities of male and female words in the output. Using an array of bias evaluation metrics, we provide empirical evidence that our approach successfully mitigates gender bias in language models without increasing perplexity. In comparison to existing debiasing strategies, data augmentation, and word embedding debiasing, our method performs better in several aspects, especially in reducing gender bias in occupation words. Finally, we introduce a combination of data augmentation and our approach, and show that it outperforms existing strategies in all bias evaluation metrics.
http://arxiv.org/abs/1905.12801
Transfer learning from natural image datasets, particularly ImageNet, using standard large models and corresponding pretrained weights has become a de-facto method for deep learning applications to medical imaging. However, there are fundamental differences in data sizes, features and task specifications between natural image classification and the target medical tasks, and there is little understanding of the effects of transfer. In this paper, we explore properties of transfer learning for medical imaging. A performance evaluation on two large scale medical imaging tasks shows that surprisingly, transfer offers little benefit to performance, and simple, lightweight models can perform comparably to ImageNet architectures. Investigating the learned representations and features, we find that some of the differences from transfer learning are due to the over-parametrization of standard models rather than sophisticated feature reuse. We isolate where useful feature reuse occurs, and outline the implications for more efficient model exploration. We also explore feature independent benefits of transfer arising from weight scalings.
http://arxiv.org/abs/1902.07208
In this paper, we study the adversarial attack and defence problem in deep learning from the perspective of Fourier analysis. We first explicitly compute the Fourier transform of deep ReLU neural networks and show that there exist decaying but non-zero high frequency components in the Fourier spectrum of neural networks. We demonstrate that the vulnerability of neural networks towards adversarial samples can be attributed to these insignificant but non-zero high frequency components. Based on this analysis, we propose to use a simple post-averaging technique to smooth out these high frequency components to improve the robustness of neural networks against adversarial attacks. Experimental results on the ImageNet dataset have shown that our proposed method is universally effective to defend many existing adversarial attacking methods proposed in the literature, including FGSM, PGD, DeepFool and C&W attacks. Our post-averaging method is simple since it does not require any re-training, and meanwhile it can successfully defend over 95% of the adversarial samples generated by these methods without introducing any significant performance degradation (less than 1%) on the original clean images.
http://arxiv.org/abs/1905.12797
We contribute a new dataset and a novel method for natural language based fashion image retrieval. Unlike previous fashion datasets, we provide natural language annotations to facilitate the training of interactive image retrieval systems, as well as the commonly used attribute based labels. We propose a novel approach and empirically demonstrate that combining natural language feedback with visual attribute information results in superior user feedback modeling and retrieval performance relative to using either of these modalities. We believe that our dataset can encourage further work on developing more natural and real-world applicable conversational shopping assistants.
http://arxiv.org/abs/1905.12794
Undirected neural sequence models such as BERT have received renewed interest due to their success on discriminative natural language understanding tasks such as question-answering and natural language inference. The problem of generating sequences directly from these models has received relatively little attention, in part because generating from such models departs significantly from the conventional approach of monotonic generation in directed sequence models. We investigate this problem by first proposing a generalized model of sequence generation that unifies decoding in directed and undirected models. The proposed framework models the process of generation rather than a resulting sequence, and under this framework, we derive various neural sequence models as special cases, such as autoregressive, semi-autoregressive, and refinement-based non-autoregressive models. This unification enables us to adapt decoding algorithms originally developed for directed sequence models to undirected models. We demonstrate this by evaluating various decoding strategies for the recently proposed cross-lingual masked translation model. Our experiments reveal that generation from undirected sequence models, under our framework, is competitive against the state of the art on WMT’14 English-German translation. We furthermore observe that the proposed approach enables constant-time translation while losing only 1 BLEU score compared to linear-time translation from the same undirected neural sequence model.
http://arxiv.org/abs/1905.12790
The goal of a Question Paraphrase Retrieval (QPR) system is to retrieve equivalent questions that result in the same answer as the original question. Such a system can be used to understand and answer rare and noisy reformulations of common questions by mapping them to a set of canonical forms. This has large-scale applications for community Question Answering (cQA) and open-domain spoken language question answering systems. In this paper we describe a new QPR system implemented as a Neural Information Retrieval (NIR) system consisting of a neural network sentence encoder and an approximate k-Nearest Neighbour index for efficient vector retrieval. We also describe our mechanism to generate an annotated dataset for question paraphrase retrieval experiments automatically from question-answer logs via distant supervision. We show that the standard loss function in NIR, triplet loss, does not perform well with noisy labels. We propose smoothed deep metric loss (SDML) and with our experiments on two QPR datasets we show that it significantly outperforms triplet loss in the noisy label setting.
http://arxiv.org/abs/1905.12786
Overparameterized models that interpolate training data often display surprisingly good generalization properties. Specifically, minimum norm solutions have been shown to generalize well in the overparameterized, interpolating regime. This paper introduces a new framework for active learning based on the notion of minimum norm interpolators. We analytically study its properties and behavior in the kernel-based setting and present experimental studies with kernel methods and neural networks. In general, active learning algorithms adaptively select examples for labeling that (1) rule-out as many (incompatible) classifiers as possible at each step and/or (2) discover cluster structure in unlabeled data and label representative examples from each cluster. We show that our new active learning approach based on a minimum norm heuristic automatically exploits both these strategies.
http://arxiv.org/abs/1905.12782
While neural language models have recently demonstrated impressive performance in unconditional text generation, controllable generation and manipulation of text remain challenging. Latent variable generative models provide a natural approach for control, but their application to text has proven more difficult than to images. Models such as variational autoencoders may suffer from posterior collapse or learning an irregular latent geometry. We propose to instead employ adversarial autoencoders (AAEs) and add local perturbations by randomly replacing/removing words from input sentences during training. Within the prior enforced by the adversary, structured perturbations in the data space begin to carve and organize the latent space. Theoretically, we prove that perturbations encourage similar sentences to map to similar latent representations. Experimentally, we investigate the trade-off between text-generation and autoencoder-reconstruction capabilities. Our straightforward approach significantly improves over regular AAEs as well as other autoencoders, and enables altering the tense/sentiment of sentences through simple addition of a fixed vector offset to their latent representation.
http://arxiv.org/abs/1905.12777
Deep neural networks often require copious amount of labeled-data to train their scads of parameters. Training larger and deeper networks is hard without appropriate regularization, particularly while using a small dataset. Laterally, collecting well-annotated data is expensive, time-consuming and often infeasible. A popular way to regularize these networks is to simply train the network with more data from an alternate representative dataset. This can lead to adverse effects if the statistics of the representative dataset are dissimilar to our target. This predicament is due to the problem of domain shift. Data from a shifted domain might not produce bespoke features when a feature extractor from the representative domain is used. In this paper, we propose a new technique ($d$-SNE) of domain adaptation that cleverly uses stochastic neighborhood embedding techniques and a novel modified-Hausdorff distance. The proposed technique is learnable end-to-end and is therefore, ideally suited to train neural networks. Extensive experiments demonstrate that $d$-SNE outperforms the current states-of-the-art and is robust to the variances in different datasets, even in the one-shot and semi-supervised learning settings. $d$-SNE also demonstrates the ability to generalize to multiple domains concurrently.
http://arxiv.org/abs/1905.12775
Most practical recommender systems focus on estimating immediate user engagement without considering the long-term effects of recommendations on user behavior. Reinforcement learning (RL) methods offer the potential to optimize recommendations for long-term user engagement. However, since users are often presented with slates of multiple items - which may have interacting effects on user choice - methods are required to deal with the combinatorics of the RL action space. In this work, we address the challenge of making slate-based recommendations to optimize long-term value using RL. Our contributions are three-fold. (i) We develop SLATEQ, a decomposition of value-based temporal-difference and Q-learning that renders RL tractable with slates. Under mild assumptions on user choice behavior, we show that the long-term value (LTV) of a slate can be decomposed into a tractable function of its component item-wise LTVs. (ii) We outline a methodology that leverages existing myopic learning-based recommenders to quickly develop a recommender that handles LTV. (iii) We demonstrate our methods in simulation, and validate the scalability of decomposed TD-learning using SLATEQ in live experiments on YouTube.
http://arxiv.org/abs/1905.12767
Unsupervised domain transfer is the task of transferring or translating samples from a source distribution to a different target distribution. Current solutions unsupervised domain transfer often operate on data on which the modes of the distribution are well-matched, for instance have the same frequencies of classes between source and target distributions. However, these models do not perform well when the modes are not well-matched, as would be the case when samples are drawn independently from two different, but related, domains. This mode imbalance is problematic as generative adversarial networks (GANs), a successful approach in this setting, are sensitive to mode frequency, which results in a mismatch of semantics between source samples and generated samples of the target distribution. We propose a principled method of re-weighting training samples to correct for such mass shift between the transferred distributions, which we call batch-weight. We also provide rigorous probabilistic setting for domain transfer and new simplified objective for training transfer networks, an alternative to complex, multi-component loss functions used in the current state-of-the art image-to-image translation models. The new objective stems from the discrimination of joint distributions and enforces cycle-consistency in an abstract, high-level, rather than pixel-wise, sense. Lastly, we experimentally show the effectiveness of the proposed methods in several image-to-image translation tasks.
http://arxiv.org/abs/1905.12760
In this work, we examine the feasibility of applying Deep Convolutional Generative Adversarial Networks (DCGANs) with Single Shot Detector (SSD) as data-processing technique to handle with the challenge of pedestrian detection in the wild. Specifically, we attempted to use in-fill completion (where a portion of the image is masked) to generate random transformations of images with portions missing to expand existing labelled datasets. In our work, GAN has been trained intensively on low resolution images, in order to neutralize the challenges of the pedestrian detection in the wild, and considered humans, and few other classes for detection in smart cities. The object detector experiment performed by training GAN model along with SSD provided a substantial improvement in the results. This approach presents a very interesting overview in the current state of art on GAN networks for object detection. We used Canadian Institute for Advanced Research (CIFAR), Caltech, KITTI data set for training and testing the network under different resolutions and the experimental results with comparison been showedbetween DCGAN cascaded with SSD and SSD itself.
http://arxiv.org/abs/1905.12759
Paraphrasing exemplifies the ability to abstract semantic content from surface forms. Recent work on automatic paraphrasing is dominated by methods leveraging Machine Translation (MT) as an intermediate step. This contrasts with humans, who can paraphrase without being bilingual. This work proposes to learn paraphrasing models from an unlabeled monolingual corpus only. To that end, we propose a residual variant of vector-quantized variational auto-encoder. We compare with MT-based approaches on paraphrase identification, generation, and training augmentation. Monolingual paraphrasing outperforms unsupervised translation in all settings. Comparisons with supervised translation are more mixed: monolingual paraphrasing is interesting for identification and augmentation; supervised translation is superior for generation.
http://arxiv.org/abs/1905.12752
We address causal inference with text documents. For example, does adding a theorem to a paper affect its chance of acceptance? Does reporting the gender of a forum post author affect the popularity of the post? We estimate these effects from observational data, where they may be confounded by features of the text such as the subject or writing quality. Although the text suffices for causal adjustment, it is prohibitively high-dimensional. The challenge is to find a low-dimensional text representation that can be used in causal inference. A key insight is that causal adjustment requires only the aspects of text that are predictive of both the treatment and outcome. Our proposed method adapts deep language models to learn low-dimensional embeddings from text that predict these values well; these embeddings suffice for causal adjustment. We establish theoretical properties of this method. We study it empirically on semi-simulated and real data on paper acceptance and forum post popularity. Code is available at https://github.com/blei-lab/causal-text-embeddings.
http://arxiv.org/abs/1905.12741
We present a mechanism to compute a sketch (succinct summary) of how a complex modular deep network processes its inputs. The sketch summarizes essential information about the inputs and outputs of the network and can be used to quickly identify key components and summary statistics of the inputs. Furthermore, the sketch is recursive and can be unrolled to identify sub-components of these components and so forth, capturing a potentially complicated DAG structure. These sketches erase gracefully; even if we erase a fraction of the sketch at random, the remainder still retains the high-weight' information present in the original sketch. The sketches can also be organized in a repository to implicitly form a
knowledge graph’; it is possible to quickly retrieve sketches in the repository that are related to a sketch of interest; arranged in this fashion, the sketches can also be used to learn emerging concepts by looking for new clusters in sketch space. Finally, in the scenario where we want to learn a ground truth deep network, we show that augmenting input/output pairs with these sketches can theoretically make it easier to do so.
http://arxiv.org/abs/1905.12730
Alternating direction method of multipliers (ADMM) is a popular optimization tool for the composite and constrained problems in machine learning. However, in many machine learning problems such as black-box attacks and bandit feedback, ADMM could fail because the explicit gradients of these problems are difficult or infeasible to obtain. Zeroth-order (gradient-free) methods can effectively solve these problems due to that the objective function values are only required in the optimization. Recently, though there exist a few zeroth-order ADMM methods, they build on the convexity of objective function. Clearly, these existing zeroth-order methods are limited in many applications. In the paper, thus, we propose a class of fast zeroth-order stochastic ADMM methods (i.e., ZO-SVRG-ADMM and ZO-SAGA-ADMM) for solving nonconvex problems with multiple nonsmooth penalties, based on the coordinate smoothing gradient estimator. Moreover, we prove that both the ZO-SVRG-ADMM and ZO-SAGA-ADMM have convergence rate of $O(1/T)$, where $T$ denotes the number of iterations. In particular, our methods not only reach the best convergence rate $O(1/T)$ for the nonconvex optimization, but also are able to effectively solve many complex machine learning problems with multiple regularized penalties and constraints. Finally, we conduct the experiments of black-box binary classification and structured adversarial attack on black-box deep neural network to validate the efficiency of our algorithms.
http://arxiv.org/abs/1905.12729
The causes underlying unfair decision making are complex, being internalised in different ways by decision makers, other actors dealing with data and models, and ultimately by the individuals being affected by these decisions. One frequent manifestation of all these latent causes arises in the form of missing values: protected groups are more reluctant to give information that could be used against them, delicate information for some groups can be erased by human operators, or data acquisition may simply be less complete and systematic for minority groups. As a result, missing values and bias in data are two phenomena that are tightly coupled. However, most recent techniques, libraries and experimental results dealing with fairness in machine learning have simply ignored missing data. In this paper, we claim that fairness research should not miss the opportunity to deal properly with missing data. To support this claim, (1) we analyse the sources of missing data and bias, and we map the common causes, (2) we find that rows containing missing values are usually fairer than the rest, which should not be treated as the uncomfortable ugly data that different techniques and libraries get rid of at the first occasion, and (3) we study the trade-off between performance and fairness when the rows with missing values are used (either because the technique deals with them directly or by imputation methods). We end the paper with a series of recommended procedures about what to do with missing data when aiming for fair decision making.
http://arxiv.org/abs/1905.12728
This paper proposes a novel approach for extending monocular visual odometry to a stereo camera system. The proposed method uses an additional camera to accurately estimate and optimize the scale of the monocular visual odometry, rather than triangulating 3D points from stereo matching. Specifically, the 3D points generated by the monocular visual odometry are projected onto the other camera of the stereo pair, and the scale is recovered and optimized by directly minimizing the photometric error. In particular, it is computationally efficient, adding minimal overhead to the stereo vision system compared to straightforward stereo matching, and is robust to repetitive texture. Additionally, direct scale optimization enables stereo visual odometry to be purely based on direct method. Extensive evaluation on public datasets (e.g., KITTI), and outdoor environments (both terrestrial and underwater) demonstrates the accuracy and efficiency of a stereo visual odometry approach extended by scale optimization, as well as the robustness in environments with challenging texture.
http://arxiv.org/abs/1905.12723
In high dimensions, most machine learning methods are brittle to even a small fraction of structured outliers. To address this, we introduce a new meta-algorithm that can take in a base learner such as least squares or stochastic gradient descent, and harden the learner to be resistant to outliers. Our method, Sever, possesses strong theoretical guarantees yet is also highly scalable – beyond running the base learner itself, it only requires computing the top singular vector of a certain $n \times d$ matrix. We apply Sever on a drug design dataset and a spam classification dataset, and find that in both cases it has substantially greater robustness than several baselines. On the spam dataset, with $1\%$ corruptions, we achieved $7.4\%$ test error, compared to $13.4\%-20.5\%$ for the baselines, and $3\%$ error on the uncorrupted dataset. Similarly, on the drug design dataset, with $10\%$ corruptions, we achieved $1.42$ mean-squared error test error, compared to $1.51$-$2.33$ for the baselines, and $1.23$ error on the uncorrupted dataset.
http://arxiv.org/abs/1803.02815
We address the problem of phrase grounding by lear ing a multi-level common semantic space shared by the textual and visual modalities. We exploit multiple levels of feature maps of a Deep Convolutional Neural Network, as well as contextualized word and sentence embeddings extracted from a character-based language model. Following dedicated non-linear mappings for visual features at each level, word, and sentence embeddings, we obtain multiple instantiations of our common semantic space in which comparisons between any target text and the visual content is performed with cosine similarity. We guide the model by a multi-level multimodal attention mechanism which outputs attended visual features at each level. The best level is chosen to be compared with text content for maximizing the pertinence scores of image-sentence pairs of the ground truth. Experiments conducted on three publicly available datasets show significant performance gains (20%-60% relative) over the state-of-the-art in phrase localization and set a new performance record on those datasets. We provide a detailed ablation study to show the contribution of each element of our approach and release our code on GitHub.
http://arxiv.org/abs/1811.11683
We introduce a variant of the $k$-nearest neighbor classifier in which $k$ is chosen adaptively for each query, rather than supplied as a parameter. The choice of $k$ depends on properties of each neighborhood, and therefore may significantly vary between different points. (For example, the algorithm will use larger $k$ for predicting the labels of points in noisy regions.) We provide theory and experiments that demonstrate that the algorithm performs comparably to, and sometimes better than, $k$-NN with an optimal choice of $k$. In particular, we derive bounds on the convergence rates of our classifier that depend on a local quantity we call the `advantage’ which is significantly weaker than the Lipschitz conditions used in previous convergence rate proofs. These generalization bounds hinge on a variant of the seminal Uniform Convergence Theorem due to Vapnik and Chervonenkis; this variant concerns conditional probabilities and may be of independent interest.
http://arxiv.org/abs/1905.12717
We present a method to incrementally generate complete 2D or 3D scenes with the following properties: (a) it is globally consistent at each step according to a learned scene prior, (b) real observations of a scene can be incorporated while observing global consistency, (c) unobserved regions can be hallucinated locally in consistence with previous observations, hallucinations and global priors, and (d) hallucinations are statistical in nature, i.e., different scenes can be generated from the same observations. To achieve this, we model the virtual scene, where the active agent at each step can either perceive an observed part of the scene or generate a local hallucination. The latter can be interpreted as the agent’s expectation at this step through the scene and can be applied, e.g., to autonomous navigation. In the limit of observing real data at each point, our method converges to solving the SLAM problem. It can otherwise sample entirely imagined scenes from prior distributions. Besides autonomous agents, applications include problems where large data is required for building robust real-world applications, but few samples are available. We demonstrate efficacy on various 2D as well as 3D data.
http://arxiv.org/abs/1811.12297
This work introduces a general method for automatically finding the locations where political events in text occurred. Using a novel set of 8,000 labeled sentences, I create a method to link automatically extracted events and locations in text. The model achieves human level performance on the annotation task and outperforms previous event geolocation systems. It can be applied to most event extraction systems across geographic contexts. I formalize the event–location linking task, describe the neural network model, describe the potential uses of such a system in political science, and demonstrate a workflow to answer an open question on the role of conventional military offensives in causing civilian casualties in the Syrian civil war.
http://arxiv.org/abs/1905.12713
This paper examines the problem of dynamic traffic scene classification under space-time variations in viewpoint that arise from video captured on-board a moving vehicle. Solutions to this problem are important for realization of effective driving assistance technologies required to interpret or predict road user behavior. Currently, dynamic traffic scene classification has not been adequately addressed due to a lack of benchmark datasets that consider spatiotemporal evolution of traffic scenes resulting from a vehicle’s ego-motion. This paper has three main contributions. First, an annotated dataset is released to enable dynamic scene classification that includes 80 hours of diverse high quality driving video data clips collected in the San Francisco Bay area. The dataset includes temporal annotations for road places, road types, weather, and road surface conditions. Second, we introduce novel and baseline algorithms that utilize semantic context and temporal nature of the dataset for dynamic classification of road scenes. Finally, we showcase algorithms and experimental results that highlight how extracted features from scene classification serve as strong priors and help with tactical driver behavior understanding. The results show significant improvement from previously reported driving behavior detection baselines in the literature.
http://arxiv.org/abs/1905.12708
Automatic service composition in mobile and pervasive computing faces many challenges due to the complex and highly dynamic nature of the environment. Common approaches consider service composition as a decision problem whose solution is usually addressed from optimization perspectives which are not feasible in practice due to the intractability of the problem, limited computational resources of smart devices, service host’s mobility, and time constraints to tailor composition plans. Thus, our main contribution is the development of a cognitively-inspired agent-based service composition model focused on bounded rationality rather than optimality, which allows the system to compensate for limited resources by selectively filtering out continuous streams of data. Our approach exhibits features such as distributedness, modularity, emergent global functionality, and robustness, which endow it with capabilities to perform decentralized service composition by orchestrating manifold service providers and conflicting goals from multiple users. The evaluation of our approach shows promising results when compared against state-of-the-art service composition models.
http://arxiv.org/abs/1905.12630
Explaining decisions of deep neural networks is a hot research topic with applications in medical imaging, video surveillance, and self driving cars. Many methods have been proposed in literature to explain these decisions by identifying relevance of different pixels. In this paper, we propose a method that can generate contrastive explanations for such data where we not only highlight aspects that are in themselves sufficient to justify the classification by the deep model, but also new aspects which if added will change the classification. One of our key contributions is how we define “addition” for such rich data in a formal yet humanly interpretable way that leads to meaningful results. This was one of the open questions laid out in Dhurandhar et.al. (2018) [5], which proposed a general framework for creating (local) contrastive explanations for deep models. We showcase the efficacy of our approach on CelebA and Fashion-MNIST in creating intuitive explanations that are also quantitatively superior compared with other state-of-the-art interpretability methods.
http://arxiv.org/abs/1905.12698
Cross-lingual transfer, where a high-resource transfer language is used to improve the accuracy of a low-resource task language, is now an invaluable tool for improving performance of natural language processing (NLP) on low-resource languages. However, given a particular task language, it is not clear which language to transfer from, and the standard strategy is to select languages based on ad hoc criteria, usually the intuition of the experimenter. Since a large number of features contribute to the success of cross-lingual transfer (including phylogenetic similarity, typological properties, lexical overlap, or size of available data), even the most enlightened experimenter rarely considers all these factors for the particular task at hand. In this paper, we consider this task of automatically selecting optimal transfer languages as a ranking problem, and build models that consider the aforementioned features to perform this prediction. In experiments on representative NLP tasks, we demonstrate that our model predicts good transfer languages much better than ad hoc baselines considering single features in isolation, and glean insights on what features are most informative for each different NLP tasks, which may inform future ad hoc selection even without use of our method. Code, data, and pre-trained models are available at https://github.com/neulab/langrank
http://arxiv.org/abs/1905.12688
Recently, by using deep neural network based algorithms, object classification, detection and semantic segmentation solutions are significantly improved. However, one challenge for 2D image-based systems is that they cannot provide accurate 3D location information. This is critical for location sensitive applications such as autonomous driving and robot navigation. On the other hand, 3D methods, such as RGB-D and RGB-LiDAR based systems, can provide solutions that significantly improve the RGB only approaches. That is why this is an interesting research area for both industry and academia. Compared with 2D image-based systems, 3D-based systems are more complicated due to the following five reasons: 1) Data representation itself is more complicated. 3D images can be represented by point clouds, meshes, volumes. 2D images have pixel grid representations. 2) The computation and memory resource requirement is higher as an extra dimension is added. 3) Different distribution of the objects and difference in scene areas between indoor and outdoor make one unified framework hard to achieve. 4) 3D data, especially for the outdoor scenario, is sparse compared with the dense 2D images which makes the detection task more challenging. Finally, large size labelled datasets, which are extremely important for supervised based algorithms, are still under construction compared with well-built 2D datasets such as ImageNet. Based on challenges listed above, the described systems are organized by application scenarios, data representation methods and main tasks addressed. At the same time, critical 2D based systems which greatly influence the 3D ones are also introduced to show the connection between them.
http://arxiv.org/abs/1905.12683