Recent progress on saliency detection is substantial, benefiting mostly from the explosive development of Convolutional Neural Networks (CNNs). Semantic segmentation and saliency detection algorithms developed lately have been mostly based on Fully Convolutional Neural Networks (FCNs). There is still a large room for improvement over the generic FCN models that do not explicitly deal with the scale-space problem. Holistically-Nested Edge Detector (HED) provides a skip-layer structure with deep supervision for edge and boundary detection, but the performance gain of HED on salience detection is not obvious. In this paper, we propose a new method for saliency detection by introducing short connections to the skip-layer structures within the HED architecture. Our framework provides rich multi-scale feature maps at each layer, a property that is critically needed to perform segment detection. Our method produces state-of-the-art results on 5 widely tested salient object detection benchmarks, with advantages in terms of efficiency (0.15 seconds per image), effectiveness, and simplicity over the existing algorithms.
https://arxiv.org/abs/1611.04849
Current Zero-Shot Learning (ZSL) approaches are restricted to recognition of a single dominant unseen object category in a test image. We hypothesize that this setting is ill-suited for real-world applications where unseen objects appear only as a part of a complex scene, warranting both the recognition' and
localization’ of an unseen category. To address this limitation, we introduce a new \emph{`Zero-Shot Detection’} (ZSD) problem setting, which aims at simultaneously recognizing and locating object instances belonging to novel categories without any training examples. We also propose a new experimental protocol for ZSD based on the highly challenging ILSVRC dataset, adhering to practical issues, e.g., the rarity of unseen objects. To the best of our knowledge, this is the first end-to-end deep network for ZSD that jointly models the interplay between visual and semantic domain information. To overcome the noise in the automatically derived semantic descriptions, we utilize the concept of meta-classes to design an original loss function that achieves synergy between max-margin class separation and semantic space clustering. Furthermore, we present a baseline approach extended from recognition to detection setting. Our extensive experiments show significant performance boost over the baseline on the imperative yet difficult ZSD problem.
https://arxiv.org/abs/1803.06049
Travel providers such as airlines and on-line travel agents are becoming more and more interested in understanding how passengers choose among alternative itineraries when searching for flights. This knowledge helps them better display and adapt their offer, taking into account market conditions and customer needs. Some common applications are not only filtering and sorting alternatives, but also changing certain attributes in real-time (e.g., changing the price). In this paper, we concentrate with the problem of modeling air passenger choices of flight itineraries. This problem has historically been tackled using classical Discrete Choice Modelling techniques. Traditional statistical approaches, in particular the Multinomial Logit model (MNL), is widely used in industrial applications due to its simplicity and general good performance. However, MNL models present several shortcomings and assumptions that might not hold in real applications. To overcome these difficulties, we present a new choice model based on Pointer Networks. Given an input sequence, this type of deep neural architecture combines Recurrent Neural Networks with the Attention Mechanism to learn the conditional probability of an output whose values correspond to positions in an input sequence. Therefore, given a sequence of different alternatives presented to a customer, the model can learn to point to the one most likely to be chosen by the customer. The proposed method was evaluated on a real dataset that combines on-line user search logs and airline flight bookings. Experimental results show that the proposed model outperforms the traditional MNL model on several metrics.
https://arxiv.org/abs/1803.05976
Gene regulatory networks (GRNs) control cellular function and decision making during tissue development and homeostasis. Mathematical tools based on dynamical systems theory are often used to model these networks, but the size and complexity of these models mean that their behaviour is not always intuitive and the underlying mechanisms can be difficult to decipher. For this reason, methods that simplify and aid exploration of complex networks are necessary. To this end we develop a broadly applicable form of the Zwanzig-Mori projection. By first converting a thermodynamic state ensemble model of gene regulation into mass action reactions we derive a general method that produces a set of time evolution equations for a subset of components of a network. The influence of the rest of the network, the bulk, is captured by memory functions that describe how the subnetwork reacts to its own past state via components in the bulk. These memory functions provide probes of near-steady state dynamics, revealing information not easily accessible otherwise. We illustrate the method on a simple cross-repressive transcriptional motif to show that memory functions not only simplify the analysis of the subnetwork but also have a natural interpretation. We then apply the approach to a GRN from the vertebrate neural tube, a well characterised developmental transcriptional network composed of four interacting transcription factors. The memory functions reveal the function of specific links within the neural tube network and identify features of the regulatory structure that specifically increase the robustness of the network to initial conditions. Taken together, the study provides evidence that Zwanzig-Mori projections offer powerful and effective tools for simplifying and exploring the behaviour of GRNs.
https://arxiv.org/abs/1708.09312
We present Optimal Transport GAN (OT-GAN), a variant of generative adversarial nets minimizing a new metric measuring the distance between the generator distribution and the data distribution. This metric, which we call mini-batch energy distance, combines optimal transport in primal form with an energy distance defined in an adversarially learned feature space, resulting in a highly discriminative distance function with unbiased mini-batch gradients. Experimentally we show OT-GAN to be highly stable when trained with large mini-batches, and we present state-of-the-art results on several popular benchmark problems for image generation.
https://arxiv.org/abs/1803.05573
Traditional image recognition involves identifying the key object in a portrait-type image with a single object focus (ILSVRC, AlexNet, and VGG). More recent approaches consider dense image recognition - segmenting an image with appropriate bounding boxes and performing image recognition within these bounding boxes (Semantic segmentation). The Visual Genome dataset [5] is an attempt to bridge these various approaches to a cohesive dataset for each subtask - bounding box generation, image recognition, captioning, and a new operation: scene graph generation. Our focus is on using such scene graphs to perform graph search on image databases to holistically retrieve images based on a search criteria. We develop a method to store scene graphs and metadata in graph databases (using Neo4J) and to perform fast approximate retrieval of images based on a graph search query. We process more complex queries than single object search, e.g. “girl eating cake” retrieves images that contain the specified relation as well as variations.
https://arxiv.org/abs/1803.05401
In recent years, dynamic vision sensors (DVS), also known as event-based cameras or neuromorphic sensors, have seen increased use due to various advantages over conventional frame-based cameras. Using principles inspired by the retina, its high temporal resolution overcomes motion blurring, its high dynamic range overcomes extreme illumination conditions and its low power consumption makes it ideal for embedded systems on platforms such as drones and self-driving cars. However, event-based data sets are scarce and labels are even rarer for tasks such as object detection. We transferred discriminative knowledge from a state-of-the-art frame-based convolutional neural network (CNN) to the event-based modality via intermediate pseudo-labels, which are used as targets for supervised learning. We show, for the first time, event-based car detection under ego-motion in a real environment at 100 frames per second with a test average precision of 40.3% relative to our annotated ground truth. The event-based car detector handles motion blur and poor illumination conditions despite not explicitly trained to do so, and even complements frame-based CNN detectors, suggesting that it has learnt generalized visual representations.
https://arxiv.org/abs/1709.09323
The existing image captioning approaches typically train a one-stage sentence decoder, which is difficult to generate rich fine-grained descriptions. On the other hand, multi-stage image caption model is hard to train due to the vanishing gradient problem. In this paper, we propose a coarse-to-fine multi-stage prediction framework for image captioning, composed of multiple decoders each of which operates on the output of the previous stage, producing increasingly refined image descriptions. Our proposed learning approach addresses the difficulty of vanishing gradients during training by providing a learning objective function that enforces intermediate supervisions. Particularly, we optimize our model with a reinforcement learning approach which utilizes the output of each intermediate decoder’s test-time inference algorithm as well as the output of its preceding decoder to normalize the rewards, which simultaneously solves the well-known exposure bias problem and the loss-evaluation mismatch problem. We extensively evaluate the proposed approach on MSCOCO and show that our approach can achieve the state-of-the-art performance.
https://arxiv.org/abs/1709.03376
When a recurrent neural network language model is used for caption generation, the image information can be fed to the neural network either by directly incorporating it in the RNN – conditioning the language model by injecting' image features -- or in a layer following the RNN -- conditioning the language model by
merging’ image features. While both options are attested in the literature, there is as yet no systematic comparison between the two. In this paper we empirically show that it is not especially detrimental to performance whether one architecture is used or another. The merge architecture does have practical advantages, as conditioning by merging allows the RNN’s hidden state vector to shrink in size by up to four times. Our results suggest that the visual and linguistic modalities for caption generation need not be jointly encoded by the RNN as that yields large, memory-intensive models with few tangible advantages in performance; rather, the multimodal integration should be delayed to a subsequent stage.
https://arxiv.org/abs/1703.09137
Top-down visual attention mechanisms have been used extensively in image captioning and visual question answering (VQA) to enable deeper image understanding through fine-grained analysis and even multiple steps of reasoning. In this work, we propose a combined bottom-up and top-down attention mechanism that enables attention to be calculated at the level of objects and other salient image regions. This is the natural basis for attention to be considered. Within our approach, the bottom-up mechanism (based on Faster R-CNN) proposes image regions, each with an associated feature vector, while the top-down mechanism determines feature weightings. Applying this approach to image captioning, our results on the MSCOCO test server establish a new state-of-the-art for the task, achieving CIDEr / SPICE / BLEU-4 scores of 117.9, 21.5 and 36.9, respectively. Demonstrating the broad applicability of the method, applying the same approach to VQA we obtain first place in the 2017 VQA Challenge.
https://arxiv.org/abs/1707.07998
Paucity of large curated hand-labeled training data for every domain-of-interest forms a major bottleneck in the deployment of machine learning models in computer vision and other fields. Recent work (Data Programming) has shown how distant supervision signals in the form of labeling functions can be used to obtain labels for given data in near-constant time. In this work, we present Adversarial Data Programming (ADP), which presents an adversarial methodology to generate data as well as a curated aggregated label has given a set of weak labeling functions. We validated our method on the MNIST, Fashion MNIST, CIFAR 10 and SVHN datasets, and it outperformed many state-of-the-art models. We conducted extensive experiments to study its usefulness, as well as showed how the proposed ADP framework can be used for transfer learning as well as multi-task learning, where data from two domains are generated simultaneously using the framework along with the label information. Our future work will involve understanding the theoretical implications of this new framework from a game-theoretic perspective, as well as explore the performance of the method on more complex datasets.
https://arxiv.org/abs/1803.05137
Deep CNN-based object detection systems have achieved remarkable success on several large-scale object detection benchmarks. However, training such detectors requires a large number of labeled bounding boxes, which are more difficult to obtain than image-level annotations. Previous work addresses this issue by transforming image-level classifiers into object detectors. This is done by modeling the differences between the two on categories with both image-level and bounding box annotations, and transferring this information to convert classifiers to detectors for categories without bounding box annotations. We improve this previous work by incorporating knowledge about object similarities from visual and semantic domains during the transfer process. The intuition behind our proposed method is that visually and semantically similar categories should exhibit more common transferable properties than dissimilar categories, e.g. a better detector would result by transforming the differences between a dog classifier and a dog detector onto the cat class, than would by transforming from the violin class. Experimental results on the challenging ILSVRC2013 detection dataset demonstrate that each of our proposed object similarity based knowledge transfer methods outperforms the baseline methods. We found strong evidence that visual similarity and semantic relatedness are complementary for the task, and when combined notably improve detection, achieving state-of-the-art detection performance in a semi-supervised setting.
https://arxiv.org/abs/1801.03145
In this paper, we consider the problem of leveraging existing fully labeled categories to improve the weakly supervised detection (WSD) of new object categories, which we refer to as mixed supervised detection (MSD). Different from previous MSD methods that directly transfer the pre-trained object detectors from existing categories to new categories, we propose a more reasonable and robust objectness transfer approach for MSD. In our framework, we first learn domain-invariant objectness knowledge from the existing fully labeled categories. The knowledge is modeled based on invariant features that are robust to the distribution discrepancy between the existing categories and new categories; therefore the resulting knowledge would generalize well to new categories and could assist detection models to reject distractors (e.g., object parts) in weakly labeled images of new categories. Under the guidance of learned objectness knowledge, we utilize multiple instance learning (MIL) to model the concepts of both objects and distractors and to further improve the ability of rejecting distractors in weakly labeled images. Our robust objectness transfer approach outperforms the existing MSD methods, and achieves state-of-the-art results on the challenging ILSVRC2013 detection dataset and the PASCAL VOC datasets.
https://arxiv.org/abs/1802.09778
Current image captioning methods are usually trained via (penalized) maximum likelihood estimation. However, the log-likelihood score of a caption does not correlate well with human assessments of quality. Standard syntactic evaluation metrics, such as BLEU, METEOR and ROUGE, are also not well correlated. The newer SPICE and CIDEr metrics are better correlated, but have traditionally been hard to optimize for. In this paper, we show how to use a policy gradient (PG) method to directly optimize a linear combination of SPICE and CIDEr (a combination we call SPIDEr): the SPICE score ensures our captions are semantically faithful to the image, while CIDEr score ensures our captions are syntactically fluent. The PG method we propose improves on the prior MIXER approach, by using Monte Carlo rollouts instead of mixing MLE training with PG. We show empirically that our algorithm leads to easier optimization and improved results compared to MIXER. Finally, we show that using our PG method we can optimize any of the metrics, including the proposed SPIDEr metric which results in image captions that are strongly preferred by human raters compared to captions generated by the same model but trained to optimize MLE or the COCO metrics.
https://arxiv.org/abs/1612.00370
Most distributed storage systems provide limited abilities for querying data by attributes other than their primary keys. Supporting efficient search on secondary attributes is challenging as applications pose varying requirements to query processing systems, and no single system design can be suitable for all needs. In this paper, we show how to overcome these challenges in order to extend distributed data stores to support queries on secondary attributes. We propose a modular architecture that is flexible and allows query processing systems to make trade-offs according to different use case requirements. We describe adap-tive mechanisms that make use of this flexibility to enable query processing systems to dynamically adjust to query and write operation workloads.
https://arxiv.org/abs/1803.04141
An emerging trend of next generation communication systems is to provide network edges with additional capabilities such as storage resources in the form of caches to reduce file delivery latency. To investigate this aspect, we study the fundamental limits of a cache-aided broadcast-relay wireless network consisting of one central base station, $M$ cache-equipped transceivers and $K$ receivers from a latency-centric perspective. We use the normalized delivery time (NDT) to capture the per-bit latency for the worst-case file request pattern, normalized with respect to a reference interference-free system with unlimited transceiver cache capabilities. The objective is to design the schemes for cache placement and file delivery in order to minimize the NDT. To this end, we establish a novel converse and two types of achievability schemes applicable to both time-variant and invariant channels. The first scheme is a general one-shot scheme for any $M$ and $K$ that synergistically exploits both multicasting (coded) caching and distributed zero-forcing opportunities. We show that the proposed one-shot scheme (i) attains gains attributed to both individual and collective transceiver caches (ii) is NDT-optimal for various parameter settings, particularly at higher cache sizes. The second scheme, on the other hand, designs beamformers to facilitate both subspace interference alignment and zero-forcing at lower cache sizes. Exploiting both schemes, we are able to characterize for various special cases of $M$ and $K$ which satisfy $K+M\leq 4$ the optimal tradeoff between cache storage and latency. The tradeoff illustrates that the NDT is the preferred choice to capture the latency of a system rather than the commonly used sum degrees-of-freedom (DoF). In fact, our optimal tradeoff refutes the popular belief that increasing cache sizes translates to increasing the achievable sum DoF.
https://arxiv.org/abs/1803.04058
We propose an approach to address two issues that commonly occur during training of unsupervised GANs. First, since GANs use only a continuous latent distribution to embed multiple classes or clusters of data, they often do not correctly handle the structural discontinuity between disparate classes in a latent space. Second, discriminators of GANs easily forget about past generated samples by generators, incurring instability during adversarial training. We argue that these two infamous problems of unsupervised GAN training can be largely alleviated by a learnable memory network to which both generators and discriminators can access. Generators can effectively learn representation of training samples to understand underlying cluster distributions of data, which ease the structure discontinuity problem. At the same time, discriminators can better memorize clusters of previously generated samples, which mitigate the forgetting problem. We propose a novel end-to-end GAN model named memoryGAN, which involves a memory network that is unsupervisedly trainable and integrable to many existing GAN models. With evaluations on multiple datasets such as Fashion-MNIST, CelebA, CIFAR10, and Chairs, we show that our model is probabilistically interpretable, and generates realistic image samples of high visual fidelity. The memoryGAN also achieves the state-of-the-art inception scores over unsupervised GAN models on the CIFAR10 dataset, without any optimization tricks and weaker divergences.
https://arxiv.org/abs/1803.01500
Localization is an indispensable component of a robot’s autonomy stack that enables it to determine where it is in the environment, essentially making it a precursor for any action execution or planning. Although convolutional neural networks have shown promising results for visual localization, they are still grossly outperformed by state-of-the-art local feature-based techniques. In this work, we propose VLocNet, a new convolutional neural network architecture for 6-DoF global pose regression and odometry estimation from consecutive monocular images. Our multitask model incorporates hard parameter sharing, thus being compact and enabling real-time inference, in addition to being end-to-end trainable. We propose a novel loss function that utilizes auxiliary learning to leverage relative pose information during training, thereby constraining the search space to obtain consistent pose estimates. We evaluate our proposed VLocNet on indoor as well as outdoor datasets and show that even our single task model exceeds the performance of state-of-the-art deep architectures for global localization, while achieving competitive performance for visual odometry estimation. Furthermore, we present extensive experimental evaluations utilizing our proposed Geometric Consistency Loss that show the effectiveness of multitask learning and demonstrate that our model is the first deep learning technique to be on par with, and in some cases outperforms state-of-the-art SIFT-based approaches.
https://arxiv.org/abs/1803.03642
Visual saliency patterns are the result of a variety of factors aside from the image being parsed, however existing approaches have ignored these. To address this limitation, we propose a novel saliency estimation model which leverages the semantic modelling power of conditional generative adversarial networks together with memory architectures which capture the subject’s behavioural patterns and task dependent factors. We make contributions aiming to bridge the gap between bottom-up feature learning capabilities in modern deep learning architectures and traditional top-down hand-crafted features based methods for task specific saliency modelling. The conditional nature of the proposed framework enables us to learn contextual semantics and relationships among different tasks together, instead of learning them separately for each task. Our studies not only shed light on a novel application area for generative adversarial networks, but also emphasise the importance of task specific saliency modelling and demonstrate the plausibility of fully capturing this context via an augmented memory architecture.
https://arxiv.org/abs/1803.03354
We introduce ParlAI (pronounced “par-lay”), an open-source software platform for dialog research implemented in Python, available at this http URL. Its goal is to provide a unified framework for sharing, training and testing of dialog models, integration of Amazon Mechanical Turk for data collection, human evaluation, and online/reinforcement learning; and a repository of machine learning models for comparing with others’ models, and improving upon existing architectures. Over 20 tasks are supported in the first release, including popular datasets such as SQuAD, bAbI tasks, MCTest, WikiQA, QACNN, QADailyMail, CBT, bAbI Dialog, Ubuntu, OpenSubtitles and VQA. Several models are integrated, including neural models such as memory networks, seq2seq and attentive LSTMs.
https://arxiv.org/abs/1705.06476
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.
https://arxiv.org/abs/1803.03243
Deep models are state-of-the-art for many vision tasks including video action recognition and video captioning. Models are trained to caption or classify activity in videos, but little is known about the evidence used to make such decisions. Grounding decisions made by deep networks has been studied in spatial visual content, giving more insight into model predictions for images. However, such studies are relatively lacking for models of spatiotemporal visual content - videos. In this work, we devise a formulation that simultaneously grounds evidence in space and time, in a single pass, using top-down saliency. We visualize the spatiotemporal cues that contribute to a deep model’s classification/captioning output using the model’s internal representation. Based on these spatiotemporal cues, we are able to localize segments within a video that correspond with a specific action, or phrase from a caption, without explicitly optimizing/training for these tasks.
https://arxiv.org/abs/1711.06778
In this paper, we extend an attention-based neural machine translation (NMT) model by allowing it to access an entire training set of parallel sentence pairs even after training. The proposed approach consists of two stages. In the first stage–retrieval stage–, an off-the-shelf, black-box search engine is used to retrieve a small subset of sentence pairs from a training set given a source sentence. These pairs are further filtered based on a fuzzy matching score based on edit distance. In the second stage–translation stage–, a novel translation model, called translation memory enhanced NMT (TM-NMT), seamlessly uses both the source sentence and a set of retrieved sentence pairs to perform the translation. Empirical evaluation on three language pairs (En-Fr, En-De, and En-Es) shows that the proposed approach significantly outperforms the baseline approach and the improvement is more significant when more relevant sentence pairs were retrieved.
https://arxiv.org/abs/1705.07267
With the recent advances of neural models and natural language processing, automatic generation of classical Chinese poetry has drawn significant attention due to its artistic and cultural value. Previous works mainly focus on generating poetry given keywords or other text information, while visual inspirations for poetry have been rarely explored. Generating poetry from images is much more challenging than generating poetry from text, since images contain very rich visual information which cannot be described completely using several keywords, and a good poem should convey the image accurately. In this paper, we propose a memory based neural model which exploits images to generate poems. Specifically, an Encoder-Decoder model with a topic memory network is proposed to generate classical Chinese poetry from images. To the best of our knowledge, this is the first work attempting to generate classical Chinese poetry from images with neural networks. A comprehensive experimental investigation with both human evaluation and quantitative analysis demonstrates that the proposed model can generate poems which convey images accurately.
https://arxiv.org/abs/1803.02994
We present the results of a Herschel survey of 21 late-type stars that host planets discovered by the radial velocity technique. The aims were to discover new disks in these systems and to search for any correlation between planet presence and disk properties. In addition to the known disk around GJ 581, we report the discovery of two new disks, in the GJ 433 and GJ 649 systems. Our sample therefore yields a disk detection rate of 14%, higher than the detection rate of 1.2% among our control sample of DEBRIS M-type stars with 98% confidence. Further analysis however shows that the disk sensitivity in the control sample is about a factor of two lower in fractional luminosity than for our survey, lowering the significance of any correlation between planet presence and disk brightness below 98%. In terms of their specific architectures, the disk around GJ 433 lies at a radius somewhere between 1 and 30au. The disk around GJ 649 lies somewhere between 6 and 30au, but is marginally resolved and appears more consistent with an edge-on inclination. In both cases the disks probably lie well beyond where the known planets reside (0.06-1.1au), but the lack of radial velocity sensitivity at larger separations allows for unseen Saturn-mass planets to orbit out to $\sim$5au, and more massive planets beyond 5au. The layout of these M-type systems appears similar to Sun-like star + disk systems with low-mass planets.
https://arxiv.org/abs/1803.02832
Weakly supervised semantic segmentation receives much research attention since it alleviates the need to obtain a large amount of dense pixel-wise ground-truth annotations for the training images. Compared with other forms of weak supervision, image labels are quite efficient to obtain. In our work, we focus on the weakly supervised semantic segmentation with image label annotations. Recent progress for this task has been largely dependent on the quality of generated pseudo-annotations. In this work, inspired by spatial neural-attention for image captioning, we propose a decoupled spatial neural attention network for generating pseudo-annotations. Our decoupled attention structure could simultaneously identify the object regions and localize the discriminative parts which generates high-quality pseudo-annotations in one forward path. The generated pseudo-annotations lead to the segmentation results which achieve the state-of-the-art in weakly-supervised semantic segmentation.
https://arxiv.org/abs/1803.02563
While Deep Neural Networks (DNNs) have established the fundamentals of DNN-based autonomous driving systems, they may exhibit erroneous behaviors and cause fatal accidents. To resolve the safety issues of autonomous driving systems, a recent set of testing techniques have been designed to automatically generate test cases, e.g., new input images transformed from the original ones. Unfortunately, many such generated input images often render inferior authenticity, lacking accurate semantic information of the driving scenes and hence compromising the resulting efficacy and reliability. In this paper, we propose DeepRoad, an unsupervised framework to automatically generate large amounts of accurate driving scenes to test the consistency of DNN-based autonomous driving systems across different scenes. In particular, DeepRoad delivers driving scenes with various weather conditions (including those with rather extreme conditions) by applying the Generative Adversarial Networks (GANs) along with the corresponding real-world weather scenes. Moreover, we have implemented DeepRoad to test three well-recognized DNN-based autonomous driving systems. Experimental results demonstrate that DeepRoad can detect thousands of behavioral inconsistencies in these systems.
https://arxiv.org/abs/1802.02295
Generating high fidelity identity-preserving faces with different facial attributes has a wide range of applications. Although a number of generative models have been developed to tackle this problem, there is still much room for further this http URL paticular, the current solutions usually ignore the perceptual information of images, which we argue that it benefits the output of a high-quality image while preserving the identity information, especially in facial attributes learning this http URL this end, we propose to train GAN iteratively via regularizing the min-max process with an integrated loss, which includes not only the per-pixel loss but also the perceptual loss. In contrast to the existing methods only deal with either image generation or transformation, our proposed iterative architecture can achieve both of them. Experiments on the multi-label facial dataset CelebA demonstrate that the proposed model has excellent performance on recognizing multiple attributes, generating a high-quality image, and transforming image with controllable attributes.
https://arxiv.org/abs/1711.06078
Recent studies show that large-scale sketch-based image retrieval (SBIR) can be efficiently tackled by cross-modal binary representation learning methods, where Hamming distance matching significantly speeds up the process of similarity search. Providing training and test data subjected to a fixed set of pre-defined categories, the cutting-edge SBIR and cross-modal hashing works obtain acceptable retrieval performance. However, most of the existing methods fail when the categories of query sketches have never been seen during training. In this paper, the above problem is briefed as a novel but realistic zero-shot SBIR hashing task. We elaborate the challenges of this special task and accordingly propose a zero-shot sketch-image hashing (ZSIH) model. An end-to-end three-network architecture is built, two of which are treated as the binary encoders. The third network mitigates the sketch-image heterogeneity and enhances the semantic relations among data by utilizing the Kronecker fusion layer and graph convolution, respectively. As an important part of ZSIH, we formulate a generative hashing scheme in reconstructing semantic knowledge representations for zero-shot retrieval. To the best of our knowledge, ZSIH is the first zero-shot hashing work suitable for SBIR and cross-modal search. Comprehensive experiments are conducted on two extended datasets, i.e., Sketchy and TU-Berlin with a novel zero-shot train-test split. The proposed model remarkably outperforms related works.
https://arxiv.org/abs/1803.02284
By combining experimental photoluminescence excitation spectroscopy and calculations based on density functional theory and many-body Green’s functions, the most efficient excitation channels of infra-red (IR) emission from Mn-Mg${k}$ paramagnetic complexes stabilized in GaN:(Mn,Mg) are here identified. Moreover, a Tanabe-Sugano energy diagram for 3$d^{2}$Mn$ ^{5+}$ is reconstructed and Mn-Mg${3}$ are singled out as the predominant configurations responsible for the IR emission. The correlation of intensity of the individual emission lines as a function of temperature and excitation energy, allows assigning them to well defined and specific optical transitions.
https://arxiv.org/abs/1803.02092
Deep networks have shown great performance in classification tasks. However, the parameters learned by the classifier networks usually discard stylistic information of the input, in favour of information strictly relevant to classification. We introduce a network that has the capacity to do both classification and reconstruction by adding a “style memory” to the output layer of the network. We also show how to train such a neural network as a deep multi-layer autoencoder, jointly minimizing both classification and reconstruction losses. The generative capacity of our network demonstrates that the combination of style-memory neurons with the classifier neurons yield good reconstructions of the inputs when the classification is correct. We further investigate the nature of the style memory, and how it relates to composing digits and letters. Finally, we propose that this architecture enables the bidirectional flow of information used in predictive coding, and that such bidirectional networks can help mitigate against being fooled by ambiguous or adversarial input.
https://arxiv.org/abs/1803.01900
Despite being impactful on a variety of problems and applications, the generative adversarial nets (GANs) are remarkably difficult to train. This issue is formally analyzed by \cite{arjovsky2017towards}, who also propose an alternative direction to avoid the caveats in the minmax two-player training of GANs. The corresponding algorithm, called Wasserstein GAN (WGAN), hinges on the 1-Lipschitz continuity of the discriminator. In this paper, we propose a novel approach to enforcing the Lipschitz continuity in the training procedure of WGANs. Our approach seamlessly connects WGAN with one of the recent semi-supervised learning methods. As a result, it gives rise to not only better photo-realistic samples than the previous methods but also state-of-the-art semi-supervised learning results. In particular, our approach gives rise to the inception score of more than 5.0 with only 1,000 CIFAR-10 images and is the first that exceeds the accuracy of 90% on the CIFAR-10 dataset using only 4,000 labeled images, to the best of our knowledge.
https://arxiv.org/abs/1803.01541
Recent advances in object detection are mainly driven by deep learning with large-scale detection benchmarks. However, the fully-annotated training set is often limited for a target detection task, which may deteriorate the performance of deep detectors. To address this challenge, we propose a novel low-shot transfer detector (LSTD) in this paper, where we leverage rich source-domain knowledge to construct an effective target-domain detector with very few training examples. The main contributions are described as follows. First, we design a flexible deep architecture of LSTD to alleviate transfer difficulties in low-shot detection. This architecture can integrate the advantages of both SSD and Faster RCNN in a unified deep framework. Second, we introduce a novel regularized transfer learning framework for low-shot detection, where the transfer knowledge (TK) and background depression (BD) regularizations are proposed to leverage object knowledge respectively from source and target domains, in order to further enhance fine-tuning with a few target images. Finally, we examine our LSTD on a number of challenging low-shot detection experiments, where LSTD outperforms other state-of-the-art approaches. The results demonstrate that LSTD is a preferable deep detector for low-shot scenarios.
https://arxiv.org/abs/1803.01529
In video captioning task, the best practice has been achieved by attention-based models which associate salient visual components with sentences in the video. However, existing study follows a common procedure which includes a frame-level appearance modeling and motion modeling on equal interval frame sampling, which may bring about redundant visual information, sensitivity to content noise and unnecessary computation cost. We propose a plug-and-play PickNet to perform informative frame picking in video captioning. Based on a standard Encoder-Decoder framework, we develop a reinforcement-learning-based procedure to train the network sequentially, where the reward of each frame picking action is designed by maximizing visual diversity and minimizing textual discrepancy. If the candidate is rewarded, it will be selected and the corresponding latent representation of Encoder-Decoder will be updated for future trials. This procedure goes on until the end of the video sequence. Consequently, a compact frame subset can be selected to represent the visual information and perform video captioning without performance degradation. Experiment results shows that our model can use 6-8 frames to achieve competitive performance across popular benchmarks.
https://arxiv.org/abs/1803.01457
We present a detailed orbital and stability analysis of the HD~59686 binary-star planet system. HD~59686 is a single-lined moderately close ($a_{B} = 13.6\,$AU) eccentric ($e_{B} = 0.73$) binary, where the primary is an evolved K giant with mass $M = 1.9 M_{\odot}$ and the secondary is a star with a minimum mass of $m_{B} = 0.53 M_{\odot}$. Additionally, on the basis of precise radial velocity (RV) data a Jovian planet with a minimum mass of $m_p = 7 M_{\mathrm{Jup}}$, orbiting the primary on a nearly circular S-type orbit with $e_p = 0.05$ and $a_p = 1.09\,$AU, has recently been announced. We investigate large sets of orbital fits consistent with HD 59686’s radial velocity data by applying bootstrap and systematic grid-search techniques coupled with self-consistent dynamical fitting. We perform long-term dynamical integrations of these fits to constrain the permitted orbital configurations. We find that if the binary and the planet in this system have prograde and aligned coplanar orbits, there are narrow regions of stable orbital solutions locked in a secular apsidal alignment with the angle between the periapses, $\Delta \omega$, librating about $0^\circ$. We also test a large number of mutually inclined dynamical models in an attempt to constrain the three-dimensional orbital architecture. We find that for nearly coplanar and retrograde orbits with mutual inclination $145^\circ \lesssim \Delta i \leq 180^\circ$, the system is fully stable for a large range of orbital solutions.
https://arxiv.org/abs/1803.01434
We propose AffordanceNet, a new deep learning approach to simultaneously detect multiple objects and their affordances from RGB images. Our AffordanceNet has two branches: an object detection branch to localize and classify the object, and an affordance detection branch to assign each pixel in the object to its most probable affordance label. The proposed framework employs three key components for effectively handling the multiclass problem in the affordance mask: a sequence of deconvolutional layers, a robust resizing strategy, and a multi-task loss function. The experimental results on the public datasets show that our AffordanceNet outperforms recent state-of-the-art methods by a fair margin, while its end-to-end architecture allows the inference at the speed of 150ms per image. This makes our AffordanceNet well suitable for real-time robotic applications. Furthermore, we demonstrate the effectiveness of AffordanceNet in different testing environments and in real robotic applications. The source code is available at this https URL
https://arxiv.org/abs/1709.07326
Multi-view face synthesis from a single image is an ill-posed problem and often suffers from serious appearance distortion. Producing photo-realistic and identity preserving multi-view results is still a not well defined synthesis problem. This paper proposes Load Balanced Generative Adversarial Networks (LB-GAN) to precisely rotate the yaw angle of an input face image to any specified angle. LB-GAN decomposes the challenging synthesis problem into two well constrained subtasks that correspond to a face normalizer and a face editor respectively. The normalizer first frontalizes an input image, and then the editor rotates the frontalized image to a desired pose guided by a remote code. In order to generate photo-realistic local details, the normalizer and the editor are trained in a two-stage manner and regulated by a conditional self-cycle loss and an attention based L2 loss. Exhaustive experiments on controlled and uncontrolled environments demonstrate that the proposed method not only improves the visual realism of multi-view synthetic images, but also preserves identity information well.
https://arxiv.org/abs/1802.07447
Deep learning methods, and in particular convolutional neural networks (CNNs), have led to an enormous breakthrough in a wide range of computer vision tasks, primarily by using large-scale annotated datasets. However, obtaining such datasets in the medical domain remains a challenge. In this paper, we present methods for generating synthetic medical images using recently presented deep learning Generative Adversarial Networks (GANs). Furthermore, we show that generated medical images can be used for synthetic data augmentation, and improve the performance of CNN for medical image classification. Our novel method is demonstrated on a limited dataset of computed tomography (CT) images of 182 liver lesions (53 cysts, 64 metastases and 65 hemangiomas). We first exploit GAN architectures for synthesizing high quality liver lesion ROIs. Then we present a novel scheme for liver lesion classification using CNN. Finally, we train the CNN using classic data augmentation and our synthetic data augmentation and compare performance. In addition, we explore the quality of our synthesized examples using visualization and expert assessment. The classification performance using only classic data augmentation yielded 78.6% sensitivity and 88.4% specificity. By adding the synthetic data augmentation the results increased to 85.7% sensitivity and 92.4% specificity. We believe that this approach to synthetic data augmentation can generalize to other medical classification applications and thus support radiologists’ efforts to improve diagnosis.
https://arxiv.org/abs/1803.01229
Introduction: A Master Patient Index(MPI) is a centralized index of all patients in a healthcare system. This index is composed of a unique identifier for each patient link to his/her demographic data and clinical encounters. A MPI is essential to ensure data interoperability in the different healthcare institution. The The health ministry of Sri Lanka planning to develop MPI for the country. This project focused on developing the prototype MPI for Sri Lanka with the view to implementing and scaling up at the national level. Methods: This project consisted of 3 phases. Phase 1: requirement analysis using focus group discussions (FGD) with information system users. Phase 2: identification of the suitable Application Programming interface (API) model. Phase 3: development of the prototype MPI. Results: FGD were conducted in 6 hospitals. There were 78 interviewers (Male -36, and female - 42). They highlighted the key requirements for the MPI. Which were the unique identification method and different searching criteria and merging records to avoid duplication. Using this information, the requirements specification for MPI was developed. A combination of monolithic and microservices architecture was selected to develop the MPI. The API using the Personal Health Number (PHN) as the unique patient identifier and HL7 standard was developed and implemented. Conclusions: Development and implementation of a MPI has facilitated the long due need for interoperability among health information systems in Sri Lankan. KEYWORDS MPI, Interoperability, Unique Identifier, PHN, API
https://arxiv.org/abs/1803.00451
Thanks to the growing availability of spoofing databases and rapid advances in using them, systems for detecting voice spoofing attacks are becoming more and more capable, and error rates close to zero are being reached for the ASVspoof2015 database. However, speech synthesis and voice conversion paradigms that are not considered in the ASVspoof2015 database are appearing. Such examples include direct waveform modelling and generative adversarial networks. We also need to investigate the feasibility of training spoofing systems using only low-quality found data. For that purpose, we developed a generative adversarial network-based speech enhancement system that improves the quality of speech data found in publicly available sources. Using the enhanced data, we trained state-of-the-art text-to-speech and voice conversion models and evaluated them in terms of perceptual speech quality and speaker similarity. The results show that the enhancement models significantly improved the SNR of low-quality degraded data found in publicly available sources and that they significantly improved the perceptual cleanliness of the source speech without significantly degrading the naturalness of the voice. However, the results also show limitations when generating speech with the low-quality found data.
https://arxiv.org/abs/1803.00860
The best summary of a long video differs among different people due to its highly subjective nature. Even for the same person, the best summary may change with time or mood. In this paper, we introduce the task of generating customized video summaries through simple text. First, we train a deep architecture to effectively learn semantic embeddings of video frames by leveraging the abundance of image-caption data via a progressive and residual manner. Given a user-specific text description, our algorithm is able to select semantically relevant video segments and produce a temporally aligned video summary. In order to evaluate our textually customized video summaries, we conduct experimental comparison with baseline methods that utilize ground-truth information. Despite the challenging baselines, our method still manages to show comparable or even exceeding performance. We also show that our method is able to generate semantically diverse video summaries by only utilizing the learned visual embeddings.
https://arxiv.org/abs/1702.01528
Questions that require counting a variety of objects in images remain a major challenge in visual question answering (VQA). The most common approaches to VQA involve either classifying answers based on fixed length representations of both the image and question or summing fractional counts estimated from each section of the image. In contrast, we treat counting as a sequential decision process and force our model to make discrete choices of what to count. Specifically, the model sequentially selects from detected objects and learns interactions between objects that influence subsequent selections. A distinction of our approach is its intuitive and interpretable output, as discrete counts are automatically grounded in the image. Furthermore, our method outperforms the state of the art architecture for VQA on multiple metrics that evaluate counting.
https://arxiv.org/abs/1712.08697
We introduce an automatic machine learning (AutoML) modeling architecture called Autostacker, which combines an innovative hierarchical stacking architecture and an Evolutionary Algorithm (EA) to perform efficient parameter search. Neither prior domain knowledge about the data nor feature preprocessing is needed. Using EA, Autostacker quickly evolves candidate pipelines with high predictive accuracy. These pipelines can be used as is or as a starting point for human experts to build on. Autostacker finds innovative combinations and structures of machine learning models, rather than selecting a single model and optimizing its hyperparameters. Compared with other AutoML systems on fifteen datasets, Autostacker achieves state-of-art or competitive performance both in terms of test accuracy and time cost.
https://arxiv.org/abs/1803.00684
Researchers have applied deep neural networks to image restoration tasks, in which they proposed various network architectures, loss functions, and training methods. In particular, adversarial training, which is employed in recent studies, seems to be a key ingredient to success. In this paper, we show that simple convolutional autoencoders (CAEs) built upon only standard network components, i.e., convolutional layers and skip connections, can outperform the state-of-the-art methods which employ adversarial training and sophisticated loss functions. The secret is to employ an evolutionary algorithm to automatically search for good architectures. Training optimized CAEs by minimizing the $\ell_2$ loss between reconstructed images and their ground truths using the ADAM optimizer is all we need. Our experimental results show that this approach achieves 27.8 dB peak signal to noise ratio (PSNR) on the CelebA dataset and 40.4 dB on the SVHN dataset, compared to 22.8 dB and 33.0 dB provided by the former state-of-the-art methods, respectively.
https://arxiv.org/abs/1803.00370
Monolingual data have been demonstrated to be helpful in improving translation quality of both statistical machine translation (SMT) systems and neural machine translation (NMT) systems, especially in resource-poor or domain adaptation tasks where parallel data are not rich enough. In this paper, we propose a novel approach to better leveraging monolingual data for neural machine translation by jointly learning source-to-target and target-to-source NMT models for a language pair with a joint EM optimization method. The training process starts with two initial NMT models pre-trained on parallel data for each direction, and these two models are iteratively updated by incrementally decreasing translation losses on training data. In each iteration step, both NMT models are first used to translate monolingual data from one language to the other, forming pseudo-training data of the other NMT model. Then two new NMT models are learnt from parallel data together with the pseudo training data. Both NMT models are expected to be improved and better pseudo-training data can be generated in next step. Experiment results on Chinese-English and English-German translation tasks show that our approach can simultaneously improve translation quality of source-to-target and target-to-source models, significantly outperforming strong baseline systems which are enhanced with monolingual data for model training including back-translation.
https://arxiv.org/abs/1803.00353
This paper describes XNMT, the eXtensible Neural Machine Translation toolkit. XNMT distin- guishes itself from other open-source NMT toolkits by its focus on modular code design, with the purpose of enabling fast iteration in research and replicable, reliable results. In this paper we describe the design of XNMT and its experiment configuration system, and demonstrate its utility on the tasks of machine translation, speech recognition, and multi-tasked machine translation/parsing. XNMT is available open-source at this https URL
https://arxiv.org/abs/1803.00188
We study the problem of detecting human-object interactions (HOI) in static images, defined as predicting a human and an object bounding box with an interaction class label that connects them. HOI detection is a fundamental problem in computer vision as it provides semantic information about the interactions among the detected objects. We introduce HICO-DET, a new large benchmark for HOI detection, by augmenting the current HICO classification benchmark with instance annotations. To solve the task, we propose Human-Object Region-based Convolutional Neural Networks (HO-RCNN). At the core of our HO-RCNN is the Interaction Pattern, a novel DNN input that characterizes the spatial relations between two bounding boxes. Experiments on HICO-DET demonstrate that our HO-RCNN, by exploiting human-object spatial relations through Interaction Patterns, significantly improves the performance of HOI detection over baseline approaches.
https://arxiv.org/abs/1702.05448
To accommodate structured approaches of neural computation, we propose a class of recurrent neural networks for indexing and storing sequences of symbols or analog data vectors. These networks with randomized input weights and orthogonal recurrent weights implement coding principles previously described in vector symbolic architectures (VSA), and leverage properties of reservoir computing. In general, the storage in reservoir computing is lossy and crosstalk noise limits the retrieval accuracy and information capacity. A novel theory to optimize memory performance in such networks is presented and compared with simulation experiments. The theory describes linear readout of analog data, and readout with winner-take-all error correction of symbolic data as proposed in VSA models. We find that diverse VSA models from the literature have universal performance properties, which are superior to what previous analyses predicted. Further, we propose novel VSA models with the statistically optimal Wiener filter in the readout that exhibit much higher information capacity, in particular for storing analog data. The presented theory also applies to memory buffers, networks with gradual forgetting, which can operate on infinite data streams without memory overflow. Interestingly, we find that different forgetting mechanisms, such as attenuating recurrent weights or neural nonlinearities, produce very similar behavior if the forgetting time constants are aligned. Such models exhibit extensive capacity when their forgetting time constant is optimized for given noise conditions and network size. These results enable the design of new types of VSA models for the online processing of data streams.
https://arxiv.org/abs/1803.00412
The ability of a classifier to recognize unknown inputs is important for many classification-based systems. We discuss the problem of simultaneous classification and novelty detection, i.e. determining whether an input is from the known set of classes and from which specific class, or from an unknown domain and does not belong to any of the known classes. We propose a method based on the Generative Adversarial Networks (GAN) framework. We show that a multi-class discriminator trained with a generator that generates samples from a mixture of nominal and novel data distributions is the optimal novelty detector. We approximate that generator with a mixture generator trained with the Feature Matching loss and empirically show that the proposed method outperforms conventional methods for novelty detection. Our findings demonstrate a simple, yet powerful new application of the GAN framework for the task of novelty detection.
https://arxiv.org/abs/1802.10560
Large-scale optoelectronics integration is strongly limited by the lack of efficient light sources, which could be integrated with the silicon complementary metal-oxide-semiconductor (CMOS) technology. Persistent efforts continue to achieve efficient light emission from silicon in the extending the silicon technology into fully integrated optoelectronic circuits. Here, we report the realization of room-temperature stimulated emission in the technologically crucial 1.5 micron wavelength range from Er-doped GaN multiple-quantum wells on silicon and sapphire. Employing the well-acknowledged variable stripe technique, we have demonstrated an optical gain up to 170 cm-1 in the multiple-quantum well structures. The observation of the stimulated emission is accompanied by the characteristic threshold behavior of emission intensity as a function of pump fluence, spectral linewidth narrowing and excitation length. The demonstration of room-temperature lasing at the minimum loss window of optical fibers and in the eye-safe wavelength region of 1.5 micron are highly sought-after for use in many applications including defense, industrial processing, communication, medicine, spectroscopy and imaging. As the synthesis of Er-doped GaN epitaxial layers on silicon and sapphire has been successfully demonstrated, the results laid the foundation for achieving hybrid GaN-Si lasers providing a new pathway towards full photonic integration for silicon optoelectronics.
https://arxiv.org/abs/1802.10456